2016

M.Sc.

3rd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-306(U-II)

(PRACTICAL)

Full Marks: 25

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Advanced Numerical and Statistical Techniques : Using C/C++/MATLAB)

Answer any one question.

Problem: 16 marks; Lab. Note Book and Viva: 4+5 marks

(Question will be selected by lottery.)

1. Write a program to evaluate determinant by Gauss elimination method, using partial pivoting.

Test your program for the following matrix:

$$\begin{bmatrix} 0 & 3 & 8 & 1 \\ 1 & 1 & 2 & -1 \\ 1 & 5 & 7 & 0 \\ -4 & 1 & 3 & 1+x \end{bmatrix}$$

where x is your roll number.

2. Write a program to find the inverse of a matrix by partial piovoting:

$$\begin{bmatrix} 1 & 1 & 9 & -2 \\ 4 & 4 & 1 & -1 \\ 5 & 5 & 6 & -3 \\ 4 & 1 & 3 & 1 \end{bmatrix}$$

3. Write a program to solve a system of linear equations by Gauss Seidal iteration method. Test your program for the following equations:

$$12x_1 + 3x_2 - x_3 = \text{your roll number}$$

 $x_1 + 8x_2 - 3x_3 = -9$
 $-3x_1 + 4x_2 - 10x_3 = 18$

4. Write a program to solve a system of linear equations by matrix inverse method. Test your program for the following equations:

$$2x_1 + 4x_2 - x_3 = 4$$

 $x_1 + 7x_2 - 3x_3 =$ your age
 $-x_1 + 2x_2 - 4x_3 = -3$

5. Write a program to solve a system of linear equations by LU decomposition method. Test your program for the following equations:

$$x_1 + 3x_2 - x_3 = 3$$

 $2x_1 + 2x_2 - 3x_3 = 7$
 $-6x_1 + 7x_2 - x_3 = 8$

6. Write a program to solve a system of linear equations by Gauss elimination method. Test your program for the following equations:

$$2x_1 + 3x_2 - x_3 = 6$$

 $x_1 + 8x_2 - 3x_3 = 7$
 $-3x_1 + 4x_2 - 4x_3 = -6$

7. Write a program to solve a system of tri-diagonal equations:

$$2x_1 + 3x_2 = 5$$

 $x_1 + 8x_2 - 3x_3 = 6$
 $x_2 - x_3 = 0$

8. (a) Write a program to find the following integration by Gauss-Legendre quadrature (6-point) formula:

$$\int_{0}^{2} (2 + xe^{-x} + R / 2) dx$$

where R is your class roll number.

(b) Write a program to solve the equation

$$\frac{dy}{dx} = 2x^2 + y$$
, $y(0) = 2$, $0.1 \le x \le 0.5$

by taking h = 0.1.

9. Write a program to solve the equation by Runge-Kutta (2nd and 4th order) methods:

$$\frac{dy}{dx} = 2x^2 + y^2, y(0) = 1,$$

find y in the interval $0 \le x \le 0.5$, taking h = 0.1.

10. Write a program to solve the equation by Runge-Kutta (2nd and 4th order) methods:

$$\frac{dy}{dx} = -x^2 + 3y^2$$
, $y(0) = 1$,

find y in the interval $0 \le x \le 0.5$, taking h = 0.1.

11. Write a program to solve the following pair of first order first degree ODEs by 4th order Runge-Kutta method:

$$\frac{dy}{dx} = y + 2z$$
, $\frac{dz}{dx} = 3y + 2z$ with $y(0) = 6$, $z(0) = 4$ for $x = 0.1$, 0.2.

12. Write a program to solve the following ODE by Milne predictor-corrector methods for x = 0.4, 0.5, 0.6:

$$\frac{dy}{dx} = x^3 + y^2$$
, $y(0) = 1$.

13. Write a program to solve the ODE

$$\frac{dy}{dx} = 2x + y^2$$
, $y(0) = 1$, $0.1 \le x \le 1.1$

by taking h = 0.1 and draw the curve using MATLAB.

14. Write a program to find the largest Eigenvalue of a square matrix by power method. Using your program find the eigenvalues of the following matrix:

where x = [R/10], [] represents box function, and R is your class roll number.

15. Write a program to find the correlation coefficient for a bivariate sample. Test your program for the following data:

X	1.23	2.34	3.45	4.67	4.90	5.12	5.78	6.01
Y	1.2345	1.5678	2.4567	3.4567	3.9087	2.9876	2.1098	1.209

16. Write a program to find the multiple correlation coefficient for the sample (x_i, y_i, z_i) , i = 1, 2, ..., n. Test your program for the following data:

X	1	2	3	4	4.5	5	5.5	6
Y	2.2345	2.5678	3.4567	4.4567	4.9087	3.9876	3.1098	2.209
z	3.45	4.56	6.90	7.12	8.45	6.90	5.23	2.34

17. Write a program to find the regression lines for a bivariate sample. Test your program for the following data:

х	0.23	1.24	2.45	3.67	3.90	4.12	4.78	5.01
Y	1.235	1.678	2.567	3.456	3.087	2.976	2.198	1.209

18. Write a program to fit a linear curve for a bivariate sample. Test your program for the following data:

х	1.25	2.25	3.25	4.25	4.50	5.00	5.25	5.50
Y	1.23	1.78	2.47	3.43	3.90	2.96	2.18	1.20

19. Write a program to fit a quadratic curve for a bivariate sample. Test your program for the following data:

x	-1.23	-2.34	1.45	2.67	3.90	4.12	4.78	5.01
Y	-1.345	1.678	1.467	3.567	3.987	2.986	2.108	1.209

20. Write a program to find two partial correlation coefficient for the sample (x_i, y_i, z_i), i = 1, 2, ..., n. Test your program for the following data:

X	1	2	3	4	5	6	7	8
Y	2.3	3.4	4.5	6.7	6.9	7.1	7.5	8.1
z	3.45	4.56	6.90	7.12	8.45	6.90	5.23	2.34