Total Pages-6

C/16/M.Sc./2nd Seme./MTM-203

2016

M.Sc. 2nd Seme. Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MTM-203

Full Marks : 50

Time : 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Abstract Algebra and Linear Algebra)

Unit-I

(Abstract Algebra)

[Marks : 25]

Answer Q. No. 1 and any two from the rest.

1. Answer any two questions :

2×2

(a) Show that $Z_2 \times Z_{30}$ is isomorphic to $Z_{10} \times Z_6$.

(Turn Over)

(b) Let G be a group and f : G → G be defined by f(a) = aⁿ,
∀ a∈G, n∈Z⁺. Suppose f is an isomorphism. Then show that, aⁿ⁻¹∈Z(G), ∀ a∈G.

(c) Define principal ideal and maximal ideal with example.

- (a) State and prove the second Isomorphism theorem of groups.
 - (b) Show that S_3 is a solvable group.
 - (c) Consider the group $G = Z_4 \times Z_6$. Let $H = \langle (\overline{o}, \overline{z}) \rangle$. What

are the orders of G, H,
$$\frac{G}{H}$$
? Compute $\frac{G}{H}$. 2

3. (a) Let G be the group of matrices

$$\left\{ \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} : a \in \mathbb{Z}_7 \& b \in \mathbb{Z}_7 \setminus [0] \right\}$$

w.r.t. matrix multiplication. Show that G is not simple. How many subgroups of order 7 are there in a simple group of order 168? Justify your answer. 3+2

C/16/M.Sc./2nd Seme./MTM-203

(Continued)

2

(b) Define the following :

Group action, stabilizers of group action, Kernel of group action, normalizers of group action. 3

- 4. (a) Show that every maximal ideal in a commutative ring with unity is a prime ideal.
 - (b) Define the following :

Euclidean domain, Principal ideal domain, Unique factorization domain.

Give an example to show that every principal ideal domain is not an Euclidean domain. 3+1

[Internal Assessment ---05]

Unit-II

(Linear Algebra)

[Marks : 25]

Answer Q. No. 5 and any two from the rest.

5. Answer any two questions :

2×2

(a) Does there exists a linear transformation $T : P_1 \rightarrow P_1$ such that

$$T(1-t) = 1, T(1+t) = t$$
?

If yes, find it.

C/16/M.Sc./2nd Seme./MTM-203

(Turn Over)

- (b) What do you mean by annihilate? Define monic polynomial?
- (c) Consider the lattice L in the following figure :

Is $L_1 = \{x, a, b, y\}$ a sublattice of L?

6. (a) Prove that a lattice L is distributive iff the equations $a \land c = b \land c$ and $a \lor c = b \lor c$ imply a = b, a, b, $c \in L$.

(b) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation whose matrix

relative to the basis B, B' is $\begin{pmatrix} 1 & 2 & 1 & -1 \\ -1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4 \end{pmatrix}$

C/16/M.Sc./2nd Seme./MTM-203

(Continued)

1

where B is the standard basis and B' = $\{v_1, v_2, v_3\}$ with

$$\mathbf{v_1} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \ \mathbf{v_3} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}.$$

Find $T(e_1)$, $T(e_2)$, $T(e_3)$ and $T(e_4)$ relative to the standard basis. 4

7. (a) Define $T: P_3(R) \rightarrow M_{2\times 2}(R)$ by

$$T(f) = \begin{pmatrix} f(1) & f(2) \\ f(3) & f(4) \end{pmatrix}$$

Examine whether T is invertible or not.

- (b) Determine all possible Jordan canonical forms for a linear operator T whose characteristic polynomial is $(t 2)^5$ and minimal polynomial is $(t 2)^2$. 2+2
 - (c) For any $n \in N$, let P_n denotes the vector space of all polynomials with real coefficients and of degree at most

n. Define
$$T: P_n \rightarrow P_{n+1}$$
 by $T(p(x)) = p'(x) - \int_0^x p(t)dt$.

Find the dimension of the null space of T?

2

2

C/16/M.Sc./2nd Seme./MTM-203

(Turn Over)

- 8. (a) Find the minimal polynomial of T, for each linear operator T on vector space V, where $V = P_2(R)$ and T(f(x)) = -xf''(x) + f'(x) + 2f(x).
 - (b) Let T be the linear operator on \mathbb{R}^3 defined by T(x, y, z) = (2y + z, x - 4y, 3x)

Find the matrix representation of T relative to the basis

 $S = \{u_1, u_2, u_3\} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$ 3

(c) Prove that a chain is a distributive lattice.

[Internal Assessment ---05]

C/16/M.Sc./2nd Seme./MTM-203

TB---150

2