2016

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-106

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Set - II

(Analog Circuit and Design Laboratory)

Answer any one question, selecting it by a lucky draw.

1. Design an active low pass filter (1st order) with following specifications:

Cut off frequency:

Gain

		Study the perfe	ormance	of th	e filter.	19		
	2.	Design an active specifications:	high pa	ss filt	er (1st order)	with followin		
		Cut off freq	uency :	.,,				
		Gain	:		*****			
		Study the perfo	rmance o	of the	e circuit.	\$		
	3.	Design a RC specifications:	phase s	shift	oscillator wi	th following		
		Output freq	uency :		****	R		
		(to be supplied	in exam.	hall	.)			
		Study its perfor	mance.					
	4.	. Design and study the performance of a 2nd order low pass filter with following specifications:						
		Cut off freq	uency :	•••••		w.		
		Gain	:	*****	••••			
		(to be supplied	in exam.	hall	.)			
	5.	Design and study the performance of a 2nd order high pass filter with following specifications:						
		Cut off frequency	lency :		••••			
		Gain	•		••••			
		(to be supplied	in exami	natio	n.) *			
•	C/1	7/M.Sc./1* Seme./	ELC-106(8	S-2)	e .	(Continued)		

- 6. Design an integrator. Take a function & study its performance in the circuit. Draw the transfer characteristics curve.
- Design a differentiation using OPAMP. Take a function (signal) & study the performance of the circuit.

Draw the transfer characteristic curve.

8. Design a fixed bias transistorized amplifier & measure $V_{\rm BE}$, $V_{\rm CE}$, $V_{\rm CB}$, $I_{\rm C}$, $I_{\rm B}$, $I_{\rm E}$ at Q-point.

Distribution of Marks

Theory		:	05	Marks
Circuit		:	10	Marks
Experiment		:	15	Marks
Results & Discuss	:	05	Marks	
Viva-Voce		:	10	Marks
Laboratory Note B	look	:	05	Marks
	Total	•	50	Marks