2016

M.Sc.

3rd Semester Examination

ELECTRONICS

PAPER-ELC-303

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Communication Engineering)

Answer Q. No. 1 and any three questions from the rest.

- 1. (a) Discuss the basic difference between pulse position modulation (PPM) and pulse width modulation (PWM).
 - (b) Write down the Dirichut condition describing the existence of Fourier transform.
 - (c) What is image frequencies? How it can be removed in a super-hetero dyne receiver?

- (d) What do you mean by the term 'companding' in a PCM system?
- (e) What do you mean by the pre-emphasis and de-emphasis in a FM system?
- 2. (a) Find the Fourier transform of $g(t) = \pi(t/\tau)$.
 - (b) Prove that the Fourier transform of a function g(t) = sgn(t) will be $\frac{1}{i\pi f}$.
 - (c) Use time differentiation properly to find the Fourier transform of the following triangular function.

3+3+4

3. (a) Discuss the method of frequency conversion of a DSB-SC signal from an initial carrier frequency W_c to final frequency W_c.

- (b) Explain how envelope detector can be used to demodulate AM wave.
- (c) Prove that the transfer function of a low pass equilizer filter H₀(f) of a VSB system is given by

$$H_0(f) = \frac{1}{H_i(f + Sc) + H_i(f - Sc)}$$

Where $H_i(f)$ is the transfer function of VSB shaping filter.

3+3+4

4. (a) An angle-modulated signal with carrier frequency W_c (= $2\pi \times 10^5$) is described by the following equation

$$\phi_{EM}(t) = 10\cos \{W_c t + 5\sin 3000t + 10\sin 2000\pi t\}$$

Find the

- (i) power of the modulated signal
- (ii) frequency deviation Δf
- (iii) deviation ratio β .
- (b) Discuss the method of FM demodulation using phase locked loop.
- (c) Explain the Armstrong method of wide band FM generation. Illustrate with proper block diagram.

3+3+4

- 5. (a) State and prove the Nyquist sumbling theorem.
 - (b) Derive the interpolation formula for ideal reconstruction of the signal g(t) from its uniform sample.
 - (c) Write down several advantages of digital communication over analog communication. What is quantization noise? 4+3+(2+1)
- 6. (a) A system has a band width of 4 kHz and a signal to noise ratio of 28 dB at the input to the receiver. Calculate the channel capacity.
 - (b) Discuss the method of PWM generation using monostable multivibrator.
 - (c) Write down the differences between DPCM and delta modulation.
 - (d) Discuss some disadvantages of PCM systems.

2+4+2+2

(Internal Assessment: 10 Marks)