2016

M.Sc.

2nd Semester Examination

ELECTRONICS

PAPER-ELC-205

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Optoelectronics Lab)

Answer any one question selecting it by a lucky draw.

1. Study the I (Current) - V (Voltage) characteristics of LED (Light emitting diode) of two colours and compare the results.

Allotment of Marks (A.M.)

- (a) Theory 5
- (b) Circuit diagram 2
- (c) Implementation of the circuit 3
- (d) Data for I-V characteristics 9+9
- (e) Graph 5
- (f) Comparison of results and discussion -2.

2. Find the numerical aperture of the given optical fibre. Calculate the acceptance angle of the same fibre.

Allotment of Marks

- (a) Working formula 6
- (b) Data for numerical aperture 20
- (c) Calculation of numerical aperture 3
- (d) Calculation of acceptance angle 3
- (e) Discussion of the results obtained 3.
- 3. Study the Optical conversion of 4-bit digital signal to its analog form by R-2R ladder Network.

Allotment of Marks

- (a) Theory and working formula 5
- (b) Circuit diagram 2
- (c) Implementation of the circuit 3
- (d) Data for different digital inputs 18
- (e) Drawing of graph 5
- (f) Discussion of results obtained -2.
- 4. Study the Current (I) Voltage (V) characteristics of Light emitting diode of three colours and compare the results.

Allotment of Marks

- (a) Theory 5
- (b) Circuit diagram 2
- (c) Implementation of the circuit 3
- (d) Data for I-V characteristics 6+6+6

- (e) Graph 5
- (f) Comparison of results and discussion 2.
- 5. Draw the characteristics of the given Voltage LDR for two light intensities. Calculate LDR resistances for both cases and compare accordingly.

<u>Allotment of Marks</u>

- (a) Theory and working formula 5
- (b) Circuit diagram 2
- (c) Implementation of the circuit 3
- (d) Data for characteristic curves 14
- (e) Graph 5
- f) Calculation of LDR resistances 2
- (g) Comparison of resistances in the two cases and discussion about them 4.
- 6. Study the frequency response of the given LDR.

Allotment of Marks

- (a) Theory 5
- (b) Circuit diagram 2
- (c) Implementation of the circuit 3
- (d) Data for frequency response 18
- (e) Graph 5
- (f) Discussion -2.

7. Given a slit with a hole of known diameter, determine the wavelength of light from diffraction of a laser beam.

Allotment of Marks

- (a) Working formula 5
- (b) Data for diffraction band on both sides of central band 20
- (c) Results and discussion 10.
- 8. Given a slit with a hole of known diameter, determine the diameter of the hole from the diffraction of a laser beam of known wavelength.

Allotment of Marks

- (a) Working formula 5
- (b) Data for diffraction band on both sides of central band 20
- (c) Results and discussion 10.

Marks Distribution

Experiment	:	35
LNB	:	05
Viva-Voce	:	10
Total	•	50