2016

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-101

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Mathematical Methods and Numerical Analysis)

Answer Q. No. 1 and any three questions from the rest.

1. Answer all questions:

5×2

- (a) What are absolute and relative errors?
- (b) Show that $E = 1 + \Delta$ where E = shift operator.

(c) Find the inverse Laplace transform of

$$\frac{S^2 - 3S + 4}{S^3}$$
.

(d) If $w = \log z$, find $\frac{dw}{dz}$ & determine where w is analytic.

(e) x 1 2 3 f(x) 5 10 15

for what value of x, f(x) = 7.

- 2. (a) Deduce an expression for Newton's forward interpolation polynomial.
 - (b) The following table gives distance in nautical miles of the visible horizon for the given heights in feet above the earth surface:

x 100 150 200 250 300 350 400 y 10.63 13.03 15.04 16.81 18.42 19.9 21.27

Find the value of y when x = 218 ft.

- 3. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using
 - (i) Trapezoidal rule;
 - (ii) Simpson's $\frac{1}{3}$ rule;
 - (iii) Simpson's $\frac{3}{8}$ rule;

Compare the results.

 $3 \times 3 + 1$

6

(a) Prove that the remainder in approximating f(x) by the interpolation polynomial using interpolating points x₀, x₁, x₂, ..., x_n is of the form

$$\frac{w(x) f^{(n+1)}(l\xi)}{(n+1)!}$$

where $w(x) = (x - x_0) (x - x_1) (x - x_2) ... (x - x_n)$ and $l\xi$ lies between the smallest and the longest of the numbers $x_0, x_1, ..., x_n$.

(b) If f(z) is analytic within and on a closed curve C and if 'a' is any point within C, then show that

$$f(a) = \frac{1}{2\pi i} \int_{a}^{b} \frac{f(z)dz}{z-a}.$$

- 5. (a) Describe the floating point representation of a real number on a computer memory location.
 - (b) Solve the initial value problem

$$\frac{dy}{dx} = x - y^2, y(0) = 1$$

to find y(0.4) by second order Runge-Kutta method using step length 0.1.

6. (a) Prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$

where $J_n(x)$ is a Bessel function of first kind of order n.

(b) Suppose the random variables X and Y have joint density function

$$f(x,y) = \begin{cases} e^{-y}, & \text{if } 0 < x < y < \infty \\ 0, & \text{otherwise} \end{cases}$$

Find the conditional density function of X given that Y = y.

Internal Assessment — 10 Marks