### 2016

# M.Sc. 1st Semester Examination COMPUTER SCIENCE

PAPER-COS-104

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

## (Computer Graphics)

#### M1

[Marks : 25]

Answer any two questions.

- (a) With a neat diagram, explain the working principle of LCD display system.
  - (b) Compare and contrast Raster Scan display system and Random Scan display system. 5+5

- 2. (a) With a precise narrative description write the algorithm for Bresenham's circle generation.
  - (b) It is desired to draw a line starting at A(3, 6) and ending at B(6, 2) on a graphics monitor. Use generalized Bresenham's algorithm to determine the pixel that would be put ON.

    5+5
- 3. (a) The reflection about the line y = x is equivalent to the reflection along x axis followed by counter clockwise rotation by  $\theta$  degree. Find the value of  $\theta$ .
  - (b) Explain all the standards of 3D rotations. 4+6
- (a) What is projection? Explain the different types of projection.
  - (b) Prove that if rotation angle is  $\theta$  the transformation matrix formed when multiplied by the transformation matrix formed when angle is  $-\theta$  is equal to identify matrix, i.e.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{1+5)+4}$$

Internal Assessment — 05

#### M<sub>2</sub>

## [Marks : 25]

## Answer any four questions.

- (a) Explain the concept of sampling and quantization of an image.
  - (b) Explain
    - (i) False contouring
    - (ii) Checkes board effect.

 $1\frac{1}{2}+1\frac{1}{2}$ 

- 2. (a) What is the importance of image enhancement in image processing?
  - (b) For the given 4 × 4 image having grey scales between [0, 9], perform histogram equalitation and draw the histogram of image before and after equalization.

$$\begin{bmatrix}
2 & 3 & 3 & 2 \\
4 & 2 & 4 & 3 \\
3 & 2 & 3 & 5 \\
2 & 4 & 2 & 4
\end{bmatrix}$$

- 3. Explain the following with application:
  - (a) Contrast stretching;
  - (b) Bit Plane Slicing.

 $2\frac{1}{2} \times 2$ 

- 4. Explain the following filtering techniques:
  - (a) Butterworth low pass filter;
  - (b) Gaussion High pass filter.

 $2\frac{1}{2} \times 2$ 

5. Explain three Basic gray level transformation techniques.

6. Write short notes on dilation and erosion.

 $2\frac{1}{2} \times 2$ 

Internal Assessment - 05