2016

M.Sc. 1st Semester Examination CHEMISTRY

PAPER-CEM-103

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Inorganic Chemistry)

Answer any four questions taking two questions from each group.

Group-A

Answer any two questions.

(a) Discuss the types of crystal lattice according to the number of lattice point per unit cell.

(b)	Calculate the wavelength of X-Ray if lattice constant of					
	crystal d = $2.8 \times$	10^{-10} metre and	1st order glancing			
	angle is 12°.		3			

- (c) Write short notes on the following:
 - (i) Glyde plane;
 - (ii) Miller indices.

2+2

- (a) Calculate the galancing angle on the cube face (100) of a rock salt crystal (a = 2.814Å) corresponding to second order reflection of X-Rays of wavelength 0.710Å.
 - (b) State the meaning and draw stereographic protections of the following point groups:
 - (i) mmm
 - (ii) 4/mm^m
 - (iii) 6m2
 - (iv) 42m

 $1\frac{1}{2} \times 4$

- 3. (a) What do you mean by subgroup of group? Find out the subgroups of D_{4h} group.
 - (b) Find out the point group of the following molecules / ions:

(i) B₂H₆ (ii) (C₆H₆)Cr(CO)₃ (iii) mer-[MA₃B₃] (iv) B₃N₃H₆ (v) XeOF4 (vi) $[Cr(ox)_3]^{3-}$ 3 (c) For H₂O molecule show that each of the symmetry operations belong to different classes. 3 (d) Prove that if K is conjugated with L and M then L and M are conjugated to each other. 1

Group-B

Answer any two questions.

(a) Discuss the active site structure of hemerythrin. 3 (b) Discuss the di oxygen binding mechanism in hemerythrin. 3 (c) Cite one model complex of hemerythrin. 2 (d) Discuss the magnetic behaviour in deoxy and oxy hemerythrin molecule.

2

5. (a) Explain the change of geometrical transformation dur-

		ing the functioning of trigger mechanism in naemogic)-
		bin/myoglobin.	2
	(b))- 2
	(c)	Explain the preferential binding of myoglobin to di-oxy gen in comparison to carbon monoxide.	7- 2
	(d)	Comment on the magnetic behaviour of de-oxy and oxy hemoglobin.	/- 2
	(e)	Comment on the chemical and steric protection of hem from irreversible oxidation of heme.	e 2
6.	(a)	Using "Great orthogonality theorem" verify that the vectors whose components are characters of two different	

irreducible representations are othogonal.

(b) Derive the matrix form of all symmetry operations present

(c) Show that no two class of a group can share a common

element.

in POCl₃ molecule.

3

5

2