2016

M.Sc. 1st Semester Examination

CHEMISTRY PAPER—CEM-101

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Physical Chemistry)

Answer five questions taking one question from each group.

Group-A

1. (a) Find the degeneracy of the first excited state of a particle present in a cubical box of side 'a'. Consider a slight distortion of the cube by 'da' along the x-axis and hence show the possible lift of degeneracy of the above degenerate state. Comment on your result.

- (b) (i) Evaluate $\langle x^3 \rangle$ for a particle in one dimensional box of length 'l' in the limit $n \rightarrow \infty$.
 - (ii) Write down the dimension of wave function, $\psi(x, y, z)$. 4+(3+1)
- 2. (a) Find out normalized eigen function \hat{L}_z of operator. Show that eigen functions of \hat{L}_z operator form an orthogonal set of function.
 - (b) Evaluate the commutator, $\begin{bmatrix} \hat{L}_+, \hat{L}_- \end{bmatrix}$. (3+2)+3

Group-B

- 3. (a) Define 'Grand connonial ensemble'.
 - (b) Derive a relation which correlates between entropy and thermodynamic probability. 2+6
- 4. (a) Starting from the expression of thermodynamic probability (Ω) at a particular distribution (without deriva-

tion) of a microcanomical ensemble derive Boltzmann's distribution law.

Given
$$\beta = \frac{1}{KT}$$

(b) Find out the condition at which inversion of population occurs.

5+3

Group-C

- **5.** (a) Derive the expression of rotational molecular partition function for heteronuclear diatomic molecule.
 - (b) Calculate the translational molecular partition function for H_2 in a volume of 1 cm³ at T = 300K. (h = 6.62 × 10⁻³⁴ JS, $K_B = 1.38 \times 10^{-23}$ JK⁻¹) 5+3
 - -
- 6. (a) How does the fugacity co-efficient is determined by measuring the compressibility factor of the gas?
 - (b) 5 gm moles water initially at 27°C are converted to a final state of vapour at 227°C, the conversion being affected under 1 atm. pressure. Assuming the vapour to behave ideally, compute the total change in entropy. Given heat capacity of water = 1 cal/gm

heat capacity of water vapour = 0.4 cal/gm Latent heat of vaporization of water = 540 cal/gm.

5 + 3

Group-D

Prove that minimum distance (critical distance) for ion-pair formation is

$$r_{\min} = \frac{\lambda}{2}$$

and hence show that the fraction of ions which are associated into ion-pair

$$\theta = 4\pi ni^{\circ} \lambda^{3} Q(b)$$

where
$$Q(b) = \int_2^b e^y y^{-4} dy$$

and other terms have their usual meanings.

- 8
- 8. (a) State the Fourier series of a function, f(x) in the interval $(-\pi, \pi)$, when
 - (i) f(x) is an even function
 - (ii) f(x) is an odd function
 - (b) Find the constrained maxima of function $f(x, y) = e^{-x^2-y^2}$ subject to the constrained condition x + y = 1.

C/17/M.Sc./1st Seme./CEM-101

(Continued)

Group-E

- 9. (a) What is Felgett advantage in FT-IR?
 - (b) Calculate to four decimal place and with units of cm⁻¹, the rotational constant 'B' for the following bonds:
 - (a) 12 C 1 H (b) 127 I 127 I

Given
$$m(^{12}C) = 12.000u$$

 $m(^{1}H) = 1.0078u$
 $m(^{127}I) = 126.90u$
 $r_{CH} = 1.1199A$, $r_{I_2} = 2.6663A$

Convert the B-values to units of GHz.

- (c) The vibrational frequency and anharmonicity constant of an alkyl halide are 300 cm⁻¹ and 0.0025 respectively. Find out the positions (in cm⁻¹) of its fundamental mode and first overtone. 2+3+3
- 10. (a) What is the need of another rotational quantum number
 'K' for non-linear polyatomic molecules?
 - (b) For a diatomic molecule AB, the energy for the rotational transition from J = 0 to J = 1 state is 3.9 cm⁻¹. Find out the energy of rotational transition from J = 3 to J = 4 state.

(c) Deduce the structure of an unknown compound with molecular formula C₅ - H₁₂O using the following information obtained from its' IR spectrum

Peak Intensity	Frequency (cm ⁻¹)	Peak Intensity	Frequency (cm ⁻¹)
m	3300	m	1465
m	2900	m	1450
m	2800	m	1375

(d) Mention two major applications of Stark effect.

2+1+3+2