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ABSTRACT 
The term medical knowledge is a superimposed concept for the relationships between 
symptoms and diagnoses a physician may find in books, journals, monographs, but also 
in practical experience. In the second half of the 20th century medical knowledge was also 
stored in computer systems. To assist physicians in medical decision- making and 
attendance medical expert systems have been constructed that use the theory of fuzzy 
sets, which was founded in 1965 by Zadeh. The present article delineates two specific 
pathways resulting from a bifurcation in the history of applied fuzzy expert systems in 
medicine. This bifurcation occurred in the 1970’s in the history of the theory of fuzzy 
systems, when Zadeh published the “rule of max-mim composition” and other 
researchers applied this rule in different areas. This was the origin of two research areas : 
fuzzy relations, introduced by Elie Sanchez in Marseille. Later on both concepts were 
used to construct medical knowledge-based systems in medicine. We present two 
Viennese systems representing these concepts: the “fuzzy version” of the Computer-
Assisted DIAGnostic System (CADIAG) which was developed at the end of the 1970s, 
and a fuzzy knowledge-based control system, FuzzyKBWean, which was established as a 
real-time application based on the use of a Patient Data Management System (PDMS) in 
the intensive care unit (ICU) in 1996. 

Keywords: Phelonephritis, chills, hematology, diagnosis, Pathology, antecedent, 
consequent, susceptible, robust, ventilation, respiratory.  

1. Introduction 
The history of computerized medical diagnosis is a history of intensive collaboration 
between Physicians and Mathematicians respectively Electrical Engineers and Computer 
Scientists. In the late 1950s Ledley and Lusted published Reasoning Foundations for 
Medical Diagnosis [1], Lipkin and Hardy [2], and Ledley [3], wrote on the methods for 
the use of card and needle systems for storage and classification of medical data and 
systematic medical decision- making. In the 1960s and 1970s various approaches to 
computerized diagnosis arose using Bayes rule [4, 5], factor analysis [6], and decision 
analysis [3]. On the other side artificial intelligence approaches came into use, e.g., 
DIALOG (Diagnostic Logic) [7] and PIP (Present Illness Program) [8], which were 
programs to simulate gathering and diagnosis using databases in form of networks of 
symptoms and diagnoses. 
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2.1. Medical knowledge  
We use the term “symptom” for any information about the patient’s state of health, 
anamnesis, signs, laboratory test results, ultrasonic results, and X- ray findings. Based on 
this information a physician has to find a list of diagnostic possibilities for the patient. To 
master this process he had to study many relationships of obligatory or facultative 
proving or excluding symtoms for diagnosis in books and journals and in his practical 
experience. These certain information about relationships that exist between symptoms 
and symptoms, symptoms and diagnoses, diagnoses and diagnoses and more complex 
relationships of combinations of symptoms and diagnoses to a symptom or diagnosis are 
formalizations of what is called medical knowledge.  

In 1976 in Toronto, Canada, Alongo Perez-ojeda called this network linked by 
logical relations “medical knowledge”. The basic conception of his master thesis Medical 
Knowledge Network. A Database for computer Aided Diagnosis was the representation 
of “Medical knowledge” using an associative model of the human memory.  

Perez-Ojeda designed a prototype system to be used in the search for an adequate 
strategy to simulate an approximate reasoning model in medical decision- making and he 
gave examples of typical elements of medical knowledge ([9], P.32): 

• “A runny nose is almost always present in a common cold”.  
• “Acute phelonephritis and infection”.  
• “Acute pyelonephritis presents occasionally fever, or chills, and malaise”.  

 

The diseases common cold and acute pyelonephristis are presented by the abbreviations 
D1 and D2 and runny nose, fever, bladder irritation, infection, chills, and malaise by S1 to 
S6. Therefore the network of medical knowledge could be graphically constructed by 
elementary knots and arcs.  

However, Perez- ojedamodeled the relations (usually, occasionally, and almost 
always) by mathematical probability modifiers : 

almost always 
 D1    S1 

usually 
 D2    S3 AND S4 
occasionally 
  D2    (S2 OR S5) AND S6 
 

Figure 1. Examples of elements of the network of medical knowledge. 

2.2. Computer- assisted diagnostic (CADIAG- 1) 
In the nineteen- sixties and- seventies, the Department of Medical Computer Sciences of 
the University of Vienna Medical School at the Vienna General Hospital envisaged the 
development of a computer assisted diagnostic system that did not use stochastic 
methods. “It was intended to develop a system which is not based on statistical 
assumptions like normal distribution, mutual independency of symptoms, constant 
probabilities of symptoms in different populations and at different observation times. 
There is no need for information about the frequency or lack of certain symptoms with 
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the sick or the healthy. Therefore rare complaints are considered as well as frequent 
diseases” ([10], P.141).  

In 1976, the second generation of the system was developed on the basis of three- 
valued logic. Here, in addition to symptoms and diagnoses being considered to be 
diagnoses are also included. For this system known as CADIAG- I. (Computer Assisted 
DIAGnostis, version- I), the following relationships between symptom (Si) and disease 
(Dj) have been defined:  

• Op: Si is obligatory occurring and proving for Dj.  
• E: Si forces obligatory exclusion of Dj.  
• FP: Si is facultative occurring and proving for Dj.  
• ON: Si is obligatory occurring and not proving for Dj.  
• FN: Si is facultative occurring and not proving for Dj.  
• NK: A specific relationship between the symptom and the disease is not known.  

 With three- valued logic these relationships could be expressed in the form of three-
valued logic operators : the symptam’s values could be present (1), absent (0), or not 

investigated )
2

1
( , whereas the possible diagnoses’ values could be present (1), absent (0), 

or possible )
2

1
( .  

As an example we show here the three-valued logic truth table of the relationship 
OP (Si is obligatory occurring and proving. Si must be present for Dj and Si proves Dj;  

ji DS ⇔ .)  

Dj 

Si 
0 

2

1
 1 

0 1 
2

1
 0 

2

1
 

2

1
 

2

1
 

2

1
 

1 0 
2

1
 1 

Figure 2. Three- valued logic truth table of OP: ji DS ⇔  

Here only a brief review may show their logical analysis of this diagnosis process : 

• x, y, ........ are used to represent ‘attributes’. A patient may have an attribute such 
as, for instance, a sign ‘fever’ or a discase ‘pneumonia’.  
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• Corresponding capital letters X, Y, ............. are used to represent statements 
about these attributes.  

• For example : Y represents the statement “The patient has attribute y”.  
• Negation ¬Y : “The patient does not have attribute y”.  
• The combination X.Y represents the combined statement “The patient has the 

attribute x and the attribute y”. 
• The combination X+Y represents the combined statement “The patient has 

attribute x or attribute y or both”.  
• The statement “If the patient has attribute x then he has attribute y” is symbolized 

by YX ⇒ . 
 

With only two attributes, symptoms (S) and diseases (D), they defined  
S (i) means              “The patient has symptom i”. i=1,2,......., n.  
D (j) means             “The patient has disease j”, j=1,2, ............., m.  
From a diagnostic textbook they took abstract example statements : 
If a patient has disease 1 and not disease 2, 
then he cannot have symptom 2  

)2()2().1( SDD ¬⇒¬  
If a patient has either or both of the symptoms,  
then he must have one or both of the diseases  

)2()1()2()1( DDSS +⇒+  
To consider in general, more than two attributes, and more complicated expressions 
Ledley and Lusted used ‘Boolean functions’ f (X, Y, .........).  
 
2.3. Medical knowledge as a fuzzy relation  
A more far-reaching concept of modeling relationships between symptoms and diseases was 
introduced in 1974 by Elie Sanchez from Marseille, France, in his human biological doctoral 
thesis Equations de Relations Floues [11]. Sanchez planned “to investigate medical aspects of 
fuzzy relations at some future time” ([12], p.47).  

In 1979 he introduced the relationship between symptoms and diagnoses by the 
concept of ‘medical knowledge’ : “In a given pathology, we denote by S a set of 
symptoms, D a set of diagnoses and P a set of patients. What we call “medical 
knowledge” is a fuzzy relation, generally denoted by R, from S to D expressing 
associations between symptoms or syndromes, and diagnoses, or groups of diagnoses” 
([13], P.438). Sanchez adopted Zadeh’s max-min-compositional rule as an inference 
mechanism. It accepts fuzzy descriptions of the patient’s symptoms and infers fuzzy 
descriptions of the patient’s diseases by means of the fuzzy relationships described 
earlier. If a patient’s symptom is Si then the patient’s state in terms of diagnoses is a 
fuzzy set Dj with the following membership function:  

.,)},,();(min{max)( DdSsdssd RSD ij
∈∈= µµµ  

),( dsRµ is the membership function of the  fuzzy relation “medical knowledge”.  
With P, a set of patients, and a fuzzy relation Q from P to S, and by ‘max-min 
composition’ we get the fuzzy relation T = Q °  R with the membership function.  
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.,,)},,();,(min{max),( DdSsPpdsspdp RQT ∈∈∈= µµµ  

This new fuzzy version of the computer assisted diagnostic system, CADIAG- 2, 
appeared in 1980. In Adlassnig’s fuzzy logical model of computer- assisted medical 
diagnosis, all symptoms Ssi ∈  are considered to be fuzzy sets of different universes of 

discourse X with membership functions )(x
isµ , for all ,Xx∈  indicating the strength 

of x’s affiliation in Si, while all diagnoses DD j ∈  are considered to be fuzzy sets in the 

set P of all patients under consideration, with 
jDµ (p) assigning the patient p’s 

membership to be subject to Dj. 
To describe medical knowledge as the relationship between symptom Si and disease 

DjAdlassnig found two fuzzy relationships, namely occurrence – how often does Si occur 
with Dj? And confirmability  how strongly does Si confirm Dj? – ([14], p.225). These 
functions could be determined by  

• linguistic documentation by medical experts and  
• medical database evaluation by statistical means or a combination of both.       

In both ways to determine these fuzzy relationships between symptoms and diagnoses, occurrence 
and confirmation, they have been defined as fuzzy sets. When physicians had to specify these 
relationships by only giving answers like always, almost always, very often, often unspecific, 
seldom, very seldom, almost never, and never, they chose fuzzy sets which have been defined by 
Adlassnig’s determination of their membership functions. In the case of medical databases, the 
membership functions’ values of occurrence and confirmability could be defined as relative 
frequencies.  

 

Figure 3.  Membership functions of the fuzzy sets occurrence o (former presence P) and 
confirmability c (former conclusiveness c) 
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Thus, in CADIAG- 2, the fuzzy relationships between symptoms (or symptom 
combinations) and diseases are given in the form of rules with associated fuzzy 
relationship tupels (frequency of occurrence o, strength of confirmation c); their general 
formulation is ([15], p.262): 
* IF antecedent THEN consequent WITH (o, c) 
In particular, the following fuzzy relationships exist ([15], p.262;K=set of symptom 
combinations SCi) :  

Si, Dj (occurrence relationship) ∆×Σ⊂SD
oR  

Si, Dj (confirmation relationship) ∆×Σ⊂SD
cR  

SCi, Dj (occurrence relationship) ∆×⊂ KR SCD
�  

SCi, Dj (confirmation relationship) ∆×⊂ KR SCD
c  

Si, Sj (occurrence relationship) Σ×Σ⊂SSR�  

Si, Sj (confirmation relationship) Σ×Σ⊂SS
cR  

Di, Dj (occurrence relationship) ∆×∆⊂DDR�  

Di, Dj (confirmation relationship) ∆×∆⊂DD
cR  

 To deduce diseases DD j ∈ suffered by patient PPk ∈  from observed symptoms 

SSj ∈ in CADIAG- II we use three max-min- compositions as inference rules : 

* hypothesis and confirmation SD
c

PSPD RRR �=1  defined by  

)},();,(min{max),(1 jiRikRjkR
DSSPDP

SD

cPSPD
µµµ =  

* exclusion (by present symptoms) )1(2
SD

c
PSPD RRR −= �  defined by  

)},(1);,(min{max),(2 jiSD
cRikPSRjkPDR

DSSPDP µµµ −=  

* exclusion (by absent symptoms) SD
o

PSPD RRR �)1(3 −= defined by  

)},();,(1{minmax),(3 jiSD
oRikPSRjkPDR

DSSPDP µµµ −=  

CADIAG - 2 was very successful in partial tests, e, g, in a study of 100 patients with 
rheumatic diseases; CADIAG- 2 elicited the correct diagnosis in 94% ([15], p, 264). 
More results can be found in [14, 15]. 

2.4. Fuzzy control in medicine   
Fuzzy control techniques have recently been applied in various medical processes such as 
pain control [16] and blood pressure control [17]. Fuzzy control compared to classical 
control theory (PID control), which is a Fuzzy logic approach to control, offers the 
following advantages [18, 19]. 

*  It can be used in systems, which cannot be easily modeled mathematically. In 
particular, systems with non linear responses that are difficult to analysis may 
respond to a Fuzzy control approach. 
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* As a rule based approach to Fuzzy control can be used to efficiently represent an 
expert’s knowledge about a problem. 

* Continuous variables may be represented by linguistic constructs that are easier to 
understand, making the controller easier to understand, making the controller easier 
to implement and modify. For instance, instead of using numeric values temperature 
may be characterized as “cold, cool, warm, or hot”.  

* Fuzzy controller may be less susceptible to system noise and parameter changes; in 
other words, they will be more robust.  

* Complex processes can be controlled by relatively few logical rules, permitting an 
easily comprehensible controller design an faster computation for real- time 
applications.  

In other words, fuzzy control can be best applied to production tasks that heavily rely on 
human experience and intuition, and which therefore rule out the application 
conventional control methods. The use of Patient Data Management Systems (PDMS) in 
Intensive Care Units (ICU) since 1992 has made it possible to apply fuzzy control 
applications in real-time in this medical field.  

Mechanical ventilation is such an example. One purpose of mechanical 
ventilation is to achieve optimal values of arterial O2-partial pressure (PO2) and arterial 
CO2- partial pressure (PCO2) while ensuring careful handling of the lung: 
* FiO2<60(else oxygen toxicity) 

* Low inspiratory pressures p1<35 (else barotraumas)  

* Small shear forces equivalent to small tidal volumes (else volume trauma) 

* Prevent atelectasis formation (else shear forces at reopening). 

 In addition the patient has to be carefully handled in order to avoid cardiac failure and 
respiratory muscle fatigue. Both of these conditions have to be observed if the heart rate 
or the respiratory rate increases. The value pO2 states whether the nation sufficient pO2 is 
not continuously available because it would entail taking a blood sample. O2- saturation 
(SpO2) provided by pulsoximetry is more convenient because SpO2 is permanently 
available. pCO2, states whether alveolar ventilation is sufficient. Similarly, the end-tidal 
CO2 (EtCO2) is permanently available, but at the disadvantage  of being an indirect 
measure of pO2. Thus of the weaning system are SpO2 and EtCO2. For instance, the 
Biphasic Positive Airway Pressure (BIPAP) controlled mode is an integrated mode of 
ventilation of Evita ventilators (Evita, Drager, Lubeck, Germany). 

This mode allows spontaneous inspiration during the whole respiratory cycle and 
thus permits a very smooth and gradual transition from controlled to spontaneous 
breathing. Ventilatory adjustments are based on two pressure levels: inspiratory pressure 
(pi or Phigh) and expiratory pressure (PE or Plow); on two durations, inspiration time (ti) and 
expiration time (tE), as well as on the fraction of inspired O2 (FiO2). Within this mode, 
five parameters can be adjusted.  

BIPAP was first described in a study published in 1989 by a group led by M. 
Baum and H. Benzer and it was incorporated in the Evita ventilator in the same year [20]. 
Earlier studies conducted by Stock et al. used the term APRV (Airway Pressure Release 
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Ventilation) [21] to describe a method of ventilation, which used the same mechanical 
principle as BIPAP, but started from a different premise. BIPAP as pressure- controlled 
ventilation with freedom of respiration and spontaneous breathing on two levels (see 
figure 4).  

 

Figure 4. BIPAP ventilation mode 
 

The procedure for weaning a patient with respiratory insufficiency from 
mechanical ventilation is a complex control task and requires expertise based on long-
standing clinical practice. Fuzzy knowledge- based weaning (FuzzyKBWean) is a fuzzy 
knowledge-based control system that proposes stepwise changes in ventilator settings 
during the entire period of artificial ventilation at the bedside in real time. 

 

Figure 5. The FuzzyKBWean control process. 

Information is obtained from a PDMS operating at the ICU with a time resolution 
of one minute. The system is used for postoperative cardiac patients at the Vienna 
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General Hospital. A large part of the explicitly given and implicitly available medical 
knowledge of an experienced intensive care specialist could be transferred to the fuzzy 
control system. Periods of deviation from the target are shorter using FuzzyKBWean . 
[22, 23]. 

3. Conclusion  
In medicine, two fields of fuzzy applications were developed in the 1970’s: computer 
assisted diagnostic systems and intelligent patient monitoring systems. Both 
developments of Zadeh’s “rule of max-min composition” namely fuzzy relations and 
fuzzy control have been applied in these areas. 

For obvious reasons, the available body of medical data (on patients, laboratory test 
results, symptoms, and diagnoses) will expand in the future. As mentioned earlier, computer- 
assisted systems using fuzzy methods will be better able to manage the complex control tasks 
of physicians than common tools. 

Most control applications in the hospital selling have to be performed within critical 
deadlines; Decisions have to be made locally and promptly. This is a setting that requires a 
local hospital intranet rather than the possibilities of the world- wide internet. 

Using current web technology, integrated systems of both types of fuzzy systems 
described above can be easily implemented as internet and intranet applications. 
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