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ABSTRACT
In this paper, wediscussthe parametric estimation of the constant-stremgighly
accelerated life test omasked series system, where complementary exponential
distributed lifetimes are assumed for the compandddased on the progressive type |l
censored and masked system life data, the maxirkaiihbod estimates (MLES) of the
unknown parameters and acceleration factor arevatkriAlso, the Bayesian estimates
(BEs) of the unknown parameters and the accelerédictor are obtained by usi@jbbs
sample algorithm and adaptive rejection samplingthowg under independent
symmetrical triangular priors and Gamma prior reigely. The effectiveness of MLEs
and BEs are compared throudhetMonte Carlo simulatiomnder different masking
levels and censoring schemes.

Keywords. Constant-stress partially accelerated life testies systemanasked data,
complementary exponential distribution, progressivge-II censoring, parametric
estimationGibbs sampling

1. Introduction

The failure datdrom multi-component systems are often used tdyaisathe reliability

of component. Usually, the systeffailure data contain the failure time and the
information on the exact component causing theegsygtilure. In some cases, however,
due to lack of proper diagnostic equipment or castl time constraints, the exact
component causing the system failure is not idextifand the failure cause is isolated to
a subset of the system components. Such type afislatlled masked data. Recently, the
statistical analysis for masked data has beenextunli several authors. Usher&Hodgson
[1] considered parameter estimation for the sesistem with exponential components
under masked data. Sarhan [2] studied Bayesiamasts of component reliabilities
under the condition that system components havstaonnfailure rates. Sarhan &Kundu
[3] introduced Bayesian estimators for the relifpimeasures of masked system, and
two-sided probability intervals of the parametens derived. Related work can also be
found in [4]-[6].
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With the development of modern manufacturing tetboyg some products have
become long lifetime and highly reliable. It isfifilt to obtain the lifetime data of such
products under normal operating conditions. Howeaecelerated life testing (ALT) can
provide information quickly onthe lifetime of thegaucts by testing them at higher than
nominal levels of stress. Some studies of mask&dudaler ALT have been developed in
the literature (e.g., [7]-[11]). Based on the ALd a&nalyze the life characteristics of
products, we need to use the relationship betweedupt life and stress levels, that is,
acceleration model. But in engineering practice, #Htcelerated model is not always
known, such as the newly developed products. Irerotd solve this problem, the
partially accelerated life test (PALT) is more abie to be performed [12]. Under the
PALT, Abd el al.[ 13] and Ismail[14][15]derived tmeaximum likelihood estimates(MLE)
and Bayesian estimates (BE) of the acceleratiotofagnd unknown parameters for
different lifetime distribution. But the above raseh does not involve masked system.
Thus, this paper present®nstant-stres®ALT (CSPALT) on masked series systems
under progressive Type Il censoring.

The rest of the paper is organized as followsodel description and basic
assumptions are given i8ection 2.The likelihood function, MLEs and BEsf the
unknown parameters and acceleration faetar derived in section 3 arfflection 4,
respectively. The effectiveness of MLEs and BEscarapared througthé Monte Carlo
simulationunder different masking levels and censoring sclsemé&ection 5. Section 6
provides some brief concluding for the paper.

2. Some assumptions and model description
Assume thatn series systems are placed on the CSPLAT, and sgstem has J
componentsAmong the n systems,are testedunder thestress leved, ,k=0,1, where

S, is use stress level ands is acceleratedstress leveh=n,+n,. Progressive type-lI|
censoring is applied as follows: For the life teghjected tahe stress leves, , at the first
failure timex,, ,R,Systems are randomly removed from the remairing systems.
Similarly, at the second failure time, , R,Systems from the remainimg-2-R,
systems are randomly removed. The test continuéktbem,th failure timex,, , all

remaining Rm:rk-”k-zr;_l&. systems are removed and the tdstminates,

wherem ,R,, k=0,1andi=12,.-m are pre-fixednumbers From the test, we can obtain
the life datax,,, < X, <...< X,,» k=0,1. Itis clear that the complete sample and type-II

censored samples are special cases of this scherttee masked system lifetime data,
the exact failure causes are often unknown. Insteadsubset of components is
responsible for the failureket S, denotethe minimum random set that possibly cause
the system i to fail Thus, the observed data can be expressed
aS(Xyay S)r Kzyr Seadver K S ) » k=0,1. For the aforementionetest the following
assumptions are made.

Al. Masking is S-independent of the failure cause.

A2. Under thestress leved, , thelifetime of componentin system i is denoted by,;,

k=01, i=12;--n.,j=212J,andX, =min{X,, X, X} is thelifetime of systeni.

30



Constant- Stress Partially Accelerated Life Teatddasked Series Systems Under
Progressive Type Il Censoring

A3. Under the usstress levelthe lifetime of componentin each system follows the
complementary exponential distribution(CED) witle throbability distribution function
(PDF), the survival function (SF) and hazard ratecfion (HRF):
foj(x):/ljx’zexp{—/lj /x}, Fy (x) =1-expf-4, 1%}, h)j(x):/ijx'zexp{—/ij /x}(l— exr§—/1j /x})f1 ‘
where x>0,4,>0, j =1,

A4. The tampered failure rate (TFR) model holdse thazard rate of the
componenj under accelerated stress legédh;(x) =g, (x), wherggis the acceleration

factor,g>1. Thus, under the accelerated condition the PDF,nafHRFof the component
j are obtained, for=1,2,--,J, respectively, by
(%)= B xexp{-A, 1 (1- exd-A, 5)" R (0)=(1-exf-4, /)",

h, (x)= A4 xexp{-1, 14 (1- exg-A, )" wherex>04,>0j=1,2J.

3. Maximum likelihood estimation
For convenience, we l&f =X, , andx, denote the observe value »gf,k=0,1and

i=1,2,..n . Based on the observed data from CSPALT with tygedbressive censoring,
we obtain the likelihood function as follows

LA B)E H{ﬁ{z[f OhEIhE (mﬁ )

In this paperwe only consider J=3Letg=(4,,1,,4,,8), and |¢| be the number of the
elements for any sey, and K, denotethe index of the component actually causing the
i-th system to failunder thestress leved,, Set A, ={is,|=1.K, = j} as the set of the
failed systems without masked under tk&ess levek, , i=12,..m andk=0.1,
i=123 .Let T ={1,2,, T2={1,38, T*={2,3}, T'=1,2,3 ,where the element m in
setr' represent the component m €1, 2,3). We let

M, ={iH§d‘ >1,5, =T'}, k=0,1,1 =1,2,3,4.Then likelihood function can be written as

3 4

LA, A, A, B) O H{ﬂﬂ SR INIICY) W [ﬁla(xki)]w} ()

The logarithm of the likelihood function is giveg b

1o i{i[Z@ +In A=A,/ %, =In (L-expEA, 1x,))]

k=0 | j=1 i0Ay

+z4; Sl +InL D (A1 ) exp(-A, /xki)(l— expeA; 1% )’1 1

I1=1iom} Dsg
+exp(@)Q§(1+ Rki)Di (- exptA, &, )} @)

where ¢ =0,ask=0,¢ = InBask=1.
The likelihood equation of the parametgr$=1,2,3.andg are given by
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:—I i{Zl/A —1/% = expEA; Ix, ) I, (F expth; K )+ > hi(x,) z (xk,)}
j k=0 [iO 100Gy KOM pUsg
+§(1+RO,)exp(A 1% ) 1% (1= exptA, K, )+,BZ( ¥R,) expid, %, )%, ( 2 expd, ¥, )F
(4)
where h(x,)= (4, /)expCA; 1%, )1~ expth; K, ) , 1y ={1|joT} ,1=1234 and
oh; 2
hi (%)= (X‘“) =L/ x2)expEA; Ix, 1= expfd; K, ) [ expth, % YA, X%, (5)

l 4
J—liU/\,,[), ;.DZMi 2(1 Ri')zl (1 p(—/1 /X“)) (6)

> In(1- expe-A; fx, )= 0

™ \3
+

Mz
i
)
i

From Eq. 4, the MLE/ (j=1,2,3)can be obtained by using the Newton—Raphson
methods. From Eg. (6), we can obtain the Mids follows
m 3 ~
=-m /D (1+R) D In(1-exp{-4; /%, })] . (7)
i=1 j=1
4. Bayesian estimation
In this subsection, the BE of the parameters,,4, and g under squared error loss
(SEL) is derived by their posterior expectationspectively. Assume thati,,A,, 8
independent of each other. The prior distributiba @ =1,2,3)is taken as the symmetrical
triangle distribution on a positive intenl=[a,,b] and the PDF of can be written as
m(A)=¢€7le;-14, -1, A OB, 8
where u =(b +a)/2¢=0b,-5)/2, j=123. The prior distribution ofg is taken as
Gamma distribution with the parameters (a, b), ihat
() =[br (a)] * " "exp(-4/b),f>1 )
Hence, the joint prior distribution of,,A,,4,,8)is
Ao )= T (@)] B exp 8 1) ] &7, 1A, = 4y [M(A A, A;) DB, XB,x By 5> 1 (10)
-
For the convenience to study the full conditiongtribution, we introduce the latent
1, if K,=j,jOT'

variableg!, . Letz!, = _
'J o, otherwise

, Where i%=12,..m 1=1234= 12,

According to the assumption Al and the definition thez|, , under stress levg], the

conditional probablllty of system i fails causeddmmponent j is
Ph, @)=y (%, /an , jOT.i0M,,1=1234 (12)

Hence for systemtim, , the latent random vectey =(z;,,.2,,.2,,), k=0.1follows the

ivv2 i
multinomial distribution, it can be written as
(le(k)l:le(k)zlel(k)3) ~M (1, Fli(k)1 6 )v E()k) 2 9 )v lr(:k)) 3 Q )),I:l Ml|<

Letz =(z,,z,), then the likelihood function in Eq. (1) can barigten as
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L(data|6,2) O n{ D 8 (A 1 X)) exp(A; 1%, 1= expeA; i, )

j=1i

[l]il,!;l. J];l B (A, 1 X5)expEA; I, X1- expEA; i, ))1]%.}

k

m [ 3 Rl m [ 3 Rurt

Eﬂ[ua—exp(—m I ))} qj[u(l— exptA; /%) ﬁ} : (12)
wheredata={( X, S1), (X2:S2)+» K » S )} » @ =1if k=04 =Bif k=1.The joint posterior
PDF of the parameterg =(4,,4,,A,,4) can be expressed as
776 data, 2) [ L (ceta |8.Z )77 6)

D”{H{A%exp SENICEECED U N( & exptr, %, )})ZM}

iOM},

m
t]]J(l—exuo(—/li 1% ))“*ﬂ-“q] (= exptd, & ™V ile | ‘ﬂj)}

[Brotmrat E‘EXP{TBE_%(RH + 1)23: In(l- exptA; K, )ﬂ (13)

i=1 j=1
whereT, =>'1/x, . Forv=1234, we define 6 ,={6,:1<6<45=V , then the full
i0A
conditional posterior distribution ofi;, and g can be obtained as
njU(Aj|9_j,data,Z)Dn{/le‘ex;(—Aj D (= expth, K, ))1[|

i) kuMk

]t h 0 IT] G exptd, & %06 -~ ) = 1.2

1

) (B16.,,data) 0 g™ ™2t [éxp{—/)’{b—Z( J)Z In( exptA, K, )}}

i=1

We can see thafollows the Gamma distribution. That is,

B~ Gamm[rrb+ml+a{b Z(R]|+:I)Zln(1 exptA, K, )%j

Let&@) = &4, 1,.4,.8) - Under the Squared error loss function, the BEf@ is given by
5(9) = Ee\data,z['{(‘g)]
= jo jo j: | 0 L(data|6,2)(7(6) (£ (6) dAdA,dAdB / j: jo jo | :L(data |6,2)0r@)dAdA,dAdS 14)
It can be seen that the Bayes estimatioptafs complicated integrals which cannot be

given in simple closed form. So that numerical rodth must be used for the
computations. We propose the Gibbs sample algottithcompute BE aof as follows:

Step 1 Start withg® = (42,19 22 519).
Step 2 Set p=1, generatg” from Gamma distribution(s 1" AP AP data).
Step 3 Generate = (z{”,z{") from the multinomial distribution of
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M@.P, )P, " e)

PoP@)k=010M, . Thep, @)is calculated by the Eq. (11) using values of
/]l(Pfl),/]l(Pfl),/]l(Pfl) ’lg(P) )

Step 4 Generatel” (j=1,23 by the adaptive rejection sampling method propdsed

Gilks and Wild [16]
1) GenerateA” from the functiomf(Alugp‘l) APd e ,dara,zp)) :

2) Generatea!” from the functior}zzﬂ(,i2 [ AP A ple) ,data,zm) :
3) GenerateA{” from the functiomg(/g | AP Al Ble) ,data,zp)) :

Step 5 Set p=p+1
Step 6 Repeat step3-5 N times
Finally, we obtain the approximate mean &) as regards posterior distribution is

E(g|data):ﬁ Z”: (A A0 A0 59), (15)

p=M+1
where M is the burn-in period, which is the numbéiterations before the stationary
distribution is achieved. Wheg©) = ,,j =1,2,3, andé(6) = 3, the BE of these parameters

can be obtained from Eq. (15) respectively.

5. Smulation study

In this section, a Monte Carlo simulation studgasducted to illustrate the performance
of the estimates. Assume that 50 series systemgutreon the CSPALT and each
containing three-components from ti&ED with the parametersj =1,4,=1.24,= 0.7

respectively with g=1.5n = 20m = 12n,= 3an,= 2. We consider the following three
different progressive censored schemes:

CS [1]R, - Li=34..0C o _[Lv=67,..18 o 2] [Re=8 R,=10
R0, aherwise’ 7o, thervise " |R,=0jiz1" |R,=0vz1

CS 3] {z;ﬂ:—oi 12" {gzi;iloi 20’ where i=1,2,..mv=12,.m.
The simulation study is performed according tofdtlewing steps:
1) Based on the values of, generate random samples
fromF,;(x) =1-Fo; (x)@NdF, (x) =1-F1;(x), (X1, X2 Xa)» 1 =12,3,k=0,1i=1,2,..,..
Setx,, =min(X,;, Xpr Xy 3) -
2) For the values af, , according to different masking leyel and progressive
censoring schemes, generate the ordered samiglgsS..), (XuzSe)r-+-» K yrSen, ) » K =0,1,

which represent two type-ll progressive censoratpdas from CED under constant

PALT.

3) Using the method presented in section 3, compute NHLEs of parameters
AAA,andg  respectively.

4) Assume that, A, A, have symmetrical triangular prior density functiooa the
intervals B, =[0.5,2.5] B, =[0.2,2.0] B, = [0,1.2respectively, andg has the prior
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distribution Gamma(2,0.27), the BE ofA,4,,A,andB can be obtained by using (15).
We set the masking levek0,0.4,0.8, respectively, the steps 1)-4) are repeated 2000

times, and compute the average estimates (AE)oMbEs and BEs of the unknown
parameters and mean squared errors (MSE) for dstgaates, see Table 1.

Pa | Cs p=0 p=0.4 p=0.8
r MLE(MSE) BE(MSE) MLE(MSE) BE(M MLE(MSE) BE(MSE)
SE
[1] | 1.1244(0.0165)| 1.1677(0.0980) 1.0367 1.1482 1.2219 (0.1091) 1.1158
/]1 (0.0646) (0.0575) (0.1045)
[2] | 0.9082(0.0218)| 1.1340(0.0194) 1.2235 1.2019 1.1809 (0.0975) 1.1022
(0.0704) (0.0656) (0.0923)
[3] 0.9398 1.1742(0.0195) 1.0867 1.1771 1.2165 (0.0918) 1.1794
(0.0237) (0.0732) (0.0603) (0.0876)
[1] | 0.9350(0.0587) 0.9688(0.0451 1.1342 0.9886 1.2269(0.1140) 0.9575
/]2 (0.C765) (0.0649 (0.C974)
[2] | 1.0853(0.0462) 1.0412(0.0357 0.9578 0.9902 1.0544 (0.0984) 0.9527
(0.0820) (0.0780) (0.0889)
[3] 1.1837 0.9533(0.0397) 1.2870 1.0000 1.3917(0.1021) 0.9792
(0.0520) (0.0809) (0.0758) (0.0987)
[1] | 0.7476(0.0162) 0.6244(0.0134 0.6364 0.5980 0.8977(0.1048) 0.5903
/13 (0.0697) (0.0764) (0.1002)
[2] | 0.7446(0.0099) 0.6557(0.0091 0.6073 0.5935 0.6667 (0.1086) 0.5763
(0.0791) (0.0727) (0.1015)
[3] 0.6418 0.6167(0.0085) 0.7584 0.5929 0.8235(0.1085) 0.5916
(0.0107) (0.0812) (0.0785) (0.0959)
[1] | 1.3233(0.0169) 1.8376(0.0147 1.3828 1.7761 1.3621(0.1263) 1.8493
B (0.C738) (0.7016) (0.10¢8)
[2] | 1.4926(0.0279) 1.5997(0.0214 1.5149 1.8623 1.5802 (0.1145) 1.8127
(0.0829) (0.0791) (0.1050)
[3] 1.5831 1.5596(0.0301) 1.5776 1.6989 1.4214(0.1098) 1.7700
(0.0347) (0.0985) (0.0894) (0.1021)

Table 1. MLEs,BEs and MSEs for the parametas, A, 1., 8)ath =1,4,=1.21,= 0.78= 1.

From table 1, it can be observed that the MSEhefMLE and BE approach are
smaller under different masking levels and cengpsichemes. In addition, the Bayesian
estimates yields smaller MSEs than the MLE approbidwever, as the masking level
increases the accurate of the both estimation rdsthre less poor in terms of the MSEs
since less information among components is availabl

5. Conclusions

In this article, we consider theonstant-stress partially accelerated life mstseries
system with masked data under progressive Typenidaring. Both the MLEs and BEs of
the unknown parameters and acceleration factodariwed The effectiveness of two
methods are compared throudhe tMonte Carlo simulatiomnder different masking
levels and censoring schemes. The results shovBtEsthas more accurate results than
the MLE approach.
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