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ABSTRACT 
In this paper, we discuss the parametric estimation of the constant-stress partially 
accelerated life test on masked series system, where complementary exponential 
distributed lifetimes are assumed for the components. Based on the progressive type II 
censored and masked system life data, the maximum-likelihood estimates (MLEs) of the 
unknown parameters and acceleration factor are derived. Also, the Bayesian estimates 
(BEs) of the unknown parameters and the acceleration factor are obtained by using Gibbs 
sample algorithm and adaptive rejection sampling method under independent 
symmetrical triangular priors and Gamma prior respectively. The effectiveness of MLEs 
and BEs are compared through the Monte Carlo simulation under different masking 
levels and censoring schemes. 
 
Keywords: Constant-stress partially accelerated life test, series systems, masked data, 
complementary exponential distribution, progressive Type-Ⅱ censoring, parametric 
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1. Introduction 
The failure data from multi-component systems are often used to analysis the reliability 
of component. Usually, the system failure data contain the failure time and the 
information on the exact component causing the system failure. In some cases, however, 
due to lack of proper diagnostic equipment or cost and time constraints, the exact 
component causing the system failure is not identified, and the failure cause is isolated to 
a subset of the system components. Such type of data is called masked data. Recently, the 
statistical analysis for masked data has been studied by several authors. Usher&Hodgson 
[1] considered parameter estimation for the series system with exponential components 
under masked data. Sarhan [2] studied Bayesian estimates of component reliabilities 
under the condition that system components have constant failure rates. Sarhan &Kundu 
[3] introduced Bayesian estimators for the reliability measures of masked system, and 
two-sided probability intervals of the parameters are derived. Related work can also be 
found in [4]-[6]. 
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With the development of modern manufacturing technology, some products have 
become long lifetime and highly reliable. It is difficult to obtain the lifetime data of such 
products under normal operating conditions. However, accelerated life testing (ALT) can 
provide information quickly onthe lifetime of the products by testing them at higher than 
nominal levels of stress. Some studies of masked data under ALT have been developed in 
the literature (e.g., [7]-[11]). Based on the ALT to analyze the life characteristics of 
products, we need to use the relationship between product life and stress levels, that is, 
acceleration model. But in engineering practice, the accelerated model is not always 
known, such as the newly developed products. In order to solve this problem, the 
partially accelerated life test (PALT) is more suitable to be performed [12]. Under the 
PALT, Abd el al.[ 13] and Ismail[14][15]derived the maximum likelihood estimates(MLE) 
and Bayesian estimates (BE) of the acceleration factor and unknown parameters for 
different lifetime distribution. But the above research does not involve masked system. 
Thus, this paper presents constant-stress PALT (CSPALT) on masked series systems 
under progressive Type II censoring. 

The rest of the paper is organized as follows. Model description and basic 
assumptions are given in Section 2. The likelihood function, MLEs and BEs of the 
unknown parameters and acceleration factor are derived in section 3 and Section 4, 
respectively. The effectiveness of MLEs and BEs are compared through the Monte Carlo 
simulation under different masking levels and censoring schemes in Section 5. Section 6 
provides some brief concluding for the paper. 

 
2. Some assumptions and model description 
Assume that n series systems are placed on the CSPLAT, and each system has J 
components. Among the n systems,kn are tested under the stress levelSk , 0,1k = , where 

0S is use stress level and 1S is accelerated stress level, 0 1n nn= + . Progressive type-II 
censoring is applied as follows: For the life test subjected to the stress levelSk , at the first 
failure time 1kX（ ）, 1kR systems are randomly removed from the remaining1kn −  systems. 
Similarly, at the second failure time 2kX（ ）, 2kR systems from the remaining 12k kn R− −  
systems are randomly removed. The test continues until the km th failure time

kkmX（ ）, all 

remaining 1k

k ki

m

km k k kiR
R n m R

−−−= ∑  systems are removed and the test terminates, 

where km , kiR , 0,1k = and 1,2, , ki m= ⋯ are pre-fixed numbers. From the test, we can obtain 
the life data 1 2k kXX < < … <（ ） （ ） kkmX（ ）

, 0,1k = . It is clear that the complete sample and type-II 

censored samples are special cases of this scheme. In the masked system lifetime data, 
the exact failure causes are often unknown. Instead, a subset of components is 
responsible for the failures. Let kiS  denote the minimum random set that possibly cause 
the system i  to fail. Thus, the observed data can be expressed 
as ( 1) 1( , ),k kX S 2 )( 2) (, , ,() ),(

k kk k km kmX S X S… , 0,1k = . For the aforementioned test the following 

assumptions are made. 
A1.  Masking is S-independent of the failure cause.  
A2.  Under the stress levelkS , the lifetime of componentj in system i is denoted by ,kijX  

0,1k = , 1,2, , , 1,2, ,ki n j J= =⋯ ⋯ , and 1 2min{ , , , }ki ki ki kiJX X X X= ⋯  is the lifetime of systemi .  
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A3. Under the use stress level, the lifetime of componentj in each system follows the 
complementary exponential distribution(CED) with the probability distribution function 
(PDF), the survival function (SF) and hazard rate function (HRF): 

( ) { }2
0 exp / ,j j jf x x xλ λ−= −  ( )0 1 exp{ / }j jF x xλ= − − , ( ) { } { }( ) 1

2
0 exp / 1 exp / ,j j j jh x x x xλ λ λ

−−= − − −  

where 0, 0,jx λ> > 1, ,j J= ⋯  

A4. The tampered failure rate (TFR) model holds: the hazard rate of the 
componentj under accelerated stress level1S is 1 0( ) ( )j jh x h xβ= , whereβ is the acceleration 

factor, 1β > . Thus, under the accelerated condition the PDF, SF and HRFof the component 
j  are obtained, for 1,2, ,j J= ⋯ , respectively, by 

 ( ) { } { }( ) 1
2

1 exp / 1 exp /j j j jf x x x x
β

βλ λ λ
−−= − − − , ( ) { }( )1 1 exp ,/j jF x x

β
λ= − −   

( ) { } { }( ) 1
2

1 exp / 1 exp / ,j j j jxh x x xβλ λ λ
−−= − − −  where 0, 0, 1,2, ,jx j Jλ> > = ⋯ . 

 
3. Maximum likelihood estimation  

For convenience, we let ( )ki kiX X= , and kix denote the observe value ofkiX , 0,1k = and 

1,2,..., ki n= . Based on the observed data from CSPALT with type II progressive censoring, 
we obtain the likelihood function as follows 

( ) ( ) ( )
1

0 1 1, 1
1 2 3( , , , )

ki
k

ki

Rm J J

kj ki kl ki kj ki
j sk i l l j j

f x F x FL xλ λ λ β
∈= = = ≠ =

      ∝ ⋅     
       
∑∏ ∏ ∏ ∏

                     

(1) 

In this paper, we only consider J=3. Let ( )1 2 3, , ,θ λ λ λ β= , and ψ  be the number of the 

elements for any set ψ , and kiK denote the index of the component actually causing the 

i-th system to fail under the stress levelSk , Set { 1, }kj ki kiA i s K j= = =  as the set of the 

failed systems without masked under the stress levelSk , 1,2,..., ki m= and 0,1k = , 

1,2,3j = .Let 1 2{1,2}, {1,3},T T= = 3 {2,3},T =  4 {1,2,3}T = ,where the element m in 
set lT represent the component m ( 1,2,3m = ). We let 
 { 1, }, 0,1, 1,2,3,4l l

k ki kiM i s s T k l= > = = = .Then likelihood function can be written as 

( ) ( ) ( )
1 3 4

1

0 1 1 1 1
1 2 3( , , ) ] ], [ [

k

ki

l
kikj k

m J
R

kj ki kj ki kj ki
j sk j i A l i ji M

h x h xL F xλ λ λ β +

∈= = ∈ = = =∈

  ∝ ⋅ ⋅ 
  

∑∏ ∏∏ ∏ ∏ ∏ ∏
          

(2) 

The logarithm of the likelihood function is given by 

( )

( )

1 3

0 1

4 12

1

[ ln / ln 1 exp( / ) ]

[ ln[ ( / )exp( / ) 1 exp( / ) ]]

kj

l
kik

k j j ki j ki
k j i A

k j ki j ki j ki
l j si M

l x x

x x x

φ λ λ λ

φ λ λ λ

= = ∈

−

= ∈∈

∝ + − − − −


+ + − − −

∑ ∑ ∑

∑∑ ∑
 

   ( ) ( )
3

1 1

exp( ) 1 ln 1 exp( / ) ,
km

k ki j ki
i j

R xφ λ
= =

+ ⋅ + ⋅ − − 


∑ ∑

                             

   (3) 

where 0, 0, ln , 1k kas k as kφ φ β= = = = .

 

 
The likelihood equation of the parameters, 1,2,3.j jλ = andβ are given by 
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( ) ( ) ( )
( )

( ) ( ) ( ) ( )
0 1

1
1

0

0 0 0 0 1 1 1 1
1 1

1/ 1 / exp( / ) / 1 exp( / ) /

1 exp( / ) / 1 exp( / ) 1 exp( / ) / 1 exp( / ) 0,

l
kj kij k

j ki j ki ki j ki j ki kp ki
k i A l l p sk Mj

m m

i j i i j i i j i i j i
i i

l
x x x x h x h x

R x x x R x x x

λ λ λ
λ

λ λ β λ λ

= ∈ ∈ ∈∈

= =

 ∂  = − − − − − + ∂   

+ + − − − + + − − − =

∑ ∑ ∑ ∑ ∑

∑ ∑

     

(4) 

where ( ) ( ) 12( / )exp( / ) 1 exp( / )j ki j ki j ki j kih x x x xλ λ λ
−

= − − − , (j) { }ll l j T= ∈ , 1,2,3,4.l =

 

and

 ( ) ( ) ( ) 21 2(1 / )exp( / ) 1 exp( / ) [1 exp( / ) / ]j ki
j ki ki j ki j ki j ki j ki

j

h x
h x x x x x xλ λ λ λ

λ
−∂

= = − − − − − −
∂

        (5) 

( ) ( )

( ) ( )

1

1

1

3 4 3

1 1
1 1 1 1

3
1

1 1
1 1

1 1
1 ln 1 exp( / )

1 ln 1 exp( / ) 0

l
j k

m

i j i
j i A l i ji M

m

i j i
i j

l
R x

m
R x

λ
β β β

λ
β

= ∈ = = =∈

= =

∂ = + + + − −
∂

= + + − − =

∑∑ ∑ ∑ ∑ ∑

∑ ∑

                             (6) 

 From Eq. (4), the MLE ̂ ( 1,2,3)j jλ = can be obtained by using the Newton–Raphson 

methods. From Eq. (6), we can obtain the MLEβ̂ as follows 

   ( )
1 3

1 1 1
1 1

ˆ ˆ/ [ 1 ln(1 exp{ / })]
m

i j i
i j

m R xβ λ
= =

= − + − −∑ ∑ .                           (7) 

4. Bayesian estimation 
In this subsection, the BE of the parameters 1 2 3, ,λ λ λ  and β  under squared error loss 
(SEL) is derived by their posterior expectation, respectively. Assume that1 2 3, ,λ λ λ , β  

independent of each other. The prior distribution of ˆ ( 1,2,3)j jλ = is taken as the symmetrical 

triangle distribution on a positive interval [ , ]j j jB a b= and the PDF ofjλ can be written as  
2( ) [ | |],j j j j j jπ λ ε ε λ µ−= − −   ,j jBλ ∈                                     (8) 

where ( ) / 2, ( ) / 2,j j j j j jb a b aµ ε= + = −  1,2,3j = . The prior distribution of β  is taken as 

Gamma distribution with the parameters (a, b), that is 
( ) ( ) 1 1[ ] exp( / ), 1a ab a bπ β β β β− −= Γ − >                                      (9) 

Hence, the joint prior distribution of 1 2 3( , , , )λ λ λ β is  

( ) ( )
3

1 1 2
1 2 3 1 2 3 1 2 3

1

( , , , ) [ ] exp( / ) [ | |], , , , 1.a a
j j j j

j

b a b B B Bπ λ λ λ β β β ε ε λ µ λ λ λ β− − −

=

= Γ − − − ∈ × × >∏     (10)                                                                   

For the convenience to study the full conditional distribution, we introduce the latent 

variables (k)

l

i j
Z . Let (k)

1, ,

0,

l
l ki

i j

if K j j T
Z

otherwise

 = ∈= 


, where (k) 1,2,..., , 1,2,3,4, 1,2,3.ki m l j= = =  

According to the assumption A1 and the definition for the (k)

l

i j
Z , under stress levelkS , the 

conditional probability of system i fails caused by component j is 
( ) ( )(k)P ( ) /

l

l
kj ki kj kii j

j T

h x h xθ
∈

= ∑ ,  , , 1,2,3,4.l l
kj T i M l∈ ∈ =                        (11) 

Hence for system l
ki M∈ , the latent random vector ( ) ( ) ( )( )1 2 3

, ,k k k

l l l
k i i i

Z Z Z Z= , 0,1,k = follows the 

multinomial distribution, it can be written as  
( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3

( , , ) ~ (1,P ( ),P ( ),P ( )),k k k k k k

l l l l l l l
ki i i i i i

Z Z Z M i Mθ θ θ ∈  

Let ( )0 1,Z Z Z= , then the likelihood function in Eq. (1) can be rewritten as 
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( )
1 3

2 1

0 1

| ,Z { ( ) (/ exp( / ) 1 exp( / ))
kj

j j ki j kk ki
k j i

i
A

x xL data xλ λθ λϕ −

= = ∈

− − −∝ ∏ ∏∏  

( )
4

2 1

1

/ exp( / ) 1 exp( / ))( ) ( }
l

ki j

l
kik

j j ki j k

Z

k ki
l ji M

i
s

x x xλ λ λϕ −

= ∈∈

 ⋅  − − −∏ ∏ ∏  

0 1
0 1

1 1
3 3

1 1 1 1

( (1 exp( / )) 1 exp( ) ,/ )
i iR Rm m

i j i j
j ki j kix x βλ λ

+ +

= = = =

− − − −
   

⋅ ⋅   
   

∏ ∏ ∏ ∏              (12) 

where 1 1),{( ,k kdata X S= 2 2, , ,(( ) }, )
k kk k km kmX S X S… , 1, 0, , 1k kif k if kφ φ β= = = = .The joint posterior 

PDF of the parameters 1 2 3( , , , )θ λ λ λ β=  can be expressed as 
( | ,Z) ( | , ) ( )data L data Zπ θ θ π θ∗ ∝ ⋅  

( ) ( ) ( )
( )

(k)
3 1 1 1

1 0

exp 1 exp( / ) (1 exp( / ))
l

kj i j

l
kj j k

ZA

j j kj j ki j ki
j k i A l l i M

T x xλ λ λ λ
− −

= = ∈ ∈ ∈

  ∝ − ⋅ − − − − 
   

∏ ∏ ∏ ∏ ∏  

        
( ) ( )

0 1

10 11

1 1

(1 exp( / )) (1 exp( / )) ii

m m
RR

j ki j ki j j j
i i

x x βλ λ ε λ µ++

= =

⋅ − − ⋅ − − ⋅ − − 


∏ ∏  

      ( )
1

0 1

3
1

1
1 1

1
exp 1 ln(1 exp( / )) ,

m
m m a

i j ki
i j

R x
b

β β λ+ + −

= =

   ⋅ ⋅ − − + − −  
   

∑ ∑                  (13) 

where 1 /
kj

kj ki
i A

T x
∈

= ∑ . For 1,2,3,4v = , we define { }:1 4, vv δθ θ δ δ− = ≤ ≤ ≠ , then the full 

conditional posterior distribution of jλ and β can be obtained as 

( ) ( ) ( ) ( )

( )

1
1 1

0

| , ,Z exp (1 exp( / )) (1 exp( / ))
l

kkj i j

l
kj j k

ZA

j j j j j kj j ki j ki
k i A l l k M

data T x xπ λ θ λ λ λ λ∗ − −
−

= ∈ ∈ ∈

 
∝ − ⋅ − − − − 

  
∏ ∏ ∏ ∏  

            ( )
0 1

10 11

1 1

(1 exp( / )) (1 exp( / )) ( ), 1,2,3.ii

m m
RR

j ki j ki j j j
i i

x x jβλ λ ε λ µ++

= =

⋅ − − ⋅ − − ⋅ − − =∏ ∏  

( ) ( )
1

0 1

3
1

4 4 1
1 1

1
| , exp 1 ln(1 exp( / ))

m
m m a

i j ki
i j

data R x
b

π β θ β β λ+ + −∗
−

= =

   ∝ ⋅ − − + − −  
   

∑ ∑ . 

We can see thatβ follows the Gamma distribution. That is, 

( )
1

1
3

0 1 1
1 1

1
~ a, 1 ln(1 exp( / ))

m

i j ki
i j

Gamma m m R x
b

β λ
−

= =

  
 + + − + − − 
   

∑ ∑ . 

Let 1 2 3( ) ( , , , )ξ θ ξ λ λ λ β= . Under the Squared error loss function, the BE of ( )ξ θ is given by 

( ) ( )| ,Z
ˆ

dataEθξ θ ξ θ=     

( ) 1 2 3 1 2 30 0 0 0 0 0 0 0
( | , ) ( ) / ( | , ) ( )L data Z d d d d L data Z d d d dθ π θ ξ θ λ λ λ β θ π θ λ λ λ β

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
= ⋅ ⋅ ⋅∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫       (14) 

It can be seen that the Bayes estimation ofξ has complicated integrals which cannot be 
given in simple closed form. So that numerical methods must be used for the 
computations. We propose the Gibbs sample algorithm to compute BE ofξ as follows: 

Step 1 Start with ( ) ( ) ( ) ( ) ( )0 0 0 0 0
1 2 3( , , , )θ λ λ λ β= . 

Step 2 Set p=1, generate ( )iβ from Gamma distribution ( ) ( ) ( )1 1 1
4 1 2 3( | , , , )p p p dataπ β λ λ λ− − −∗ . 

Step 3 Generate ( ) ( ) ( )
0 1( , )p p pZ Z Z= from the multinomial distribution of  
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( ) ( )
( )( )

1 2
(1,P ( ),P ( ),k k

pl p l

i i
M θ θ   

( )
( )

3
P ( )), 0,1,k

pl l
ki

k i Mθ = ∈  . The (k)P ( )l

i j
θ is calculated by the Eq. (11) using values of 

( ) ( ) ( ) ( )1 1 1
1 1 1, , ,p p p pλ λ λ β− − − . 

Step 4 Generate ( ) ( )1,2,3p
j jλ =  by the adaptive rejection sampling method proposed by 

Gilks and Wild [16] 
1) Generate ( )

1
pλ from the function ( ) ( ) ( ) ( )( )1 1

1 1 2 3| , , , ,Zp p p pdataπ λ λ λ β− −∗ . 

2) Generate ( )
2

pλ from the function ( ) ( ) ( ) ( )( )1
2 2 1 3| , , , ,Zp p p pdataπ λ λ λ β−∗ . 

3) Generate ( )
3

pλ from the function ( ) ( ) ( ) ( )( )3 3 1 2| , , , ,Zp p p pdataπ λ λ λ β∗ . 

Step 5 Set p=p+1 
Step 6 Repeat step3-5 N times  

 Finally, we obtain the approximate mean of ( )ξ θ as regards posterior distribution is 

( ) ( ) ( ) ( ) ( )( )1 2 3
1

1
| , , , ,

N
p p p p

p M

E data
N M

ξ ξ λ λ λ β
= +

=
− ∑

                   
(15) 

where M is the burn-in period, which is the number of iterations before the stationary 
distribution is achieved. When ( ) , 1,2,3,j jξ θ λ= =  and ( )ξ θ β= , the BE of these parameters 

can be obtained from Eq. (15) respectively.  
 
5. Simulation study 
In this section, a Monte Carlo simulation study is conducted to illustrate the performance 
of the estimates. Assume that 50 series systems are put on the CSPALT and each 
containing three-components from the CED with the parameters 1 2 31, 1.2, 0.7λ λ λ= = =  
respectively with 0 0 1 11.5, 20, 12, 30, 20n m n mβ = = = = = . We consider the following three 
different progressive censored schemes: 

CS [1]: 0

1, 3,4,...,10

0,i

i
R

otherwise

=
= 


, 1

1, 6,7,...,15

0,v

v
R

therwise

=
= 


 ; CS [2]: 01

0

8

0, 1i

R

R i

 =
 = ≠

, 11

1

10

0, 1v

R

R v

 =
 = ≠

; 

CS [3]: 0,12

0

8

0, 12i

R

R i

 =
 = ≠

, 1,20

1

10

0, 20v

R

R v

 =
 = ≠

, where 0 11,2,..., , 1,2,...,i m v m= = . 

 The simulation study is performed according to the following steps: 
1) Based on the values ofkn , generate random samples 

from 00 ( ) 1 ( )jjF x F x= − and 11 ( ) 1 ( )jjF x F x= − , 1 2 3( , , )ki ki kiX X X , 1,2,3,j = 0,1, 1,2,..., kk i n= = . 

Set 1 2 3min( , , )ki ki ki kiX X X X= . 
2) For the values ofkm , according to different masking levelp  and progressive  
censoring schemes, generate the ordered samples ( 1) 1( , ),k kX S 2 )( 2) (, , ,() ),(

k kk k km kmX S X S… , 0,1k = , 

which represent two type-II progressive censored samples from CED under constant 
PALT. 
3) Using the method presented in section 3, compute the MLEs of parameters 

1 2 3, ,λ λ λ andβ  respectively.  
4) Assume that1 2 3, ,λ λ λ have symmetrical triangular prior density functions on the 

intervals 1 2 3[0.5,2.5] [0.2,2.0] [0,1.2]B B B= = =， ， respectively, and β  has the prior 
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distribution (2,0.27)Gamma , the BE of 1 2 3, ,λ λ λ andβ  can be obtained by using (15).  

We set the masking level 0,0.4,0.8p = , respectively, the steps 1)–4) are repeated 2000 
times, and compute the average estimates (AE)of the MLEs and BEs of the unknown 
parameters and mean squared errors (MSE) for these estimates, see Table 1. 
 

Pa
r 

 

Cs p=0 p=0.4 p=0.8 
MLE(MSE) BE(MSE) MLE(MSE) BE(M

SE) 
MLE(MSE) BE(MSE) 

 

1λ
 

[1] 1.1244(0.0165) 1.1677(0.0980) 1.0367 
(0.0646) 

1.1482 
(0.0575) 

1.2219 (0.1091) 1.1158 
(0.1045) 

[2] 0.9082(0.0218) 1.1340(0.0194) 1.2235 
(0.0704) 

1.2019 
(0.0656) 

1.1809 (0.0975) 1.1022 
(0.0923) 

[3] 0.9398 
(0.0237) 

1.1742(0.0195) 1.0867 
(0.0732) 

1.1771 
(0.0603) 

1.2165 (0.0918) 1.1794 
(0.0876) 

 

2λ
 

[1] 0.9350(0.0587) 0.9688(0.0451) 1.1342 
(0.0765) 

0.9886 
(0.0649) 

1.2269(0.1140) 0.9575 
(0.0974) 

[2] 1.0853(0.0462) 1.0412(0.0357) 0.9578 
(0.0820) 

0.9902 
(0.0780) 

1.0544 (0.0984) 0.9527 
(0.0889) 

[3] 1.1837 
(0.0520) 

0.9533(0.0397) 1.2870 
(0.0809) 

1.0000 
(0.0758) 

1.3917(0.1021) 0.9792 
(0.0987) 

 

3λ
 

[1] 0.7476(0.0162) 0.6244(0.0134) 0.6364 
(0.0697) 

0.5980 
(0.0764) 

0.8977(0.1048) 0.5903 
(0.1002) 

[2] 0.7446(0.0099) 0.6557(0.0091) 0.6073 
(0.0791) 

0.5935 
(0.0727) 

0.6667 (0.1086) 0.5763 
(0.1015) 

[3] 0.6418 
(0.0107) 

0.6167(0.0085) 0.7584 
(0.0812) 

0.5929 
(0.0785) 

0.8235(0.1085) 0.5916 
(0.0959) 

 
β
 

[1] 1.3233(0.0169) 1.8376(0.0147) 1.3828 
(0.0738) 

1.7761 
(0.7016) 

1.3621(0.1263) 1.8493 
(0.1098) 

[2] 1.4926(0.0279) 1.5997(0.0214) 1.5149 
(0.0829) 

1.8623 
(0.0791) 

1.5802 (0.1145) 1.8127 
(0.1050) 

[3] 1.5831 
(0.0347) 

1.5596(0.0301) 1.5776 
(0.0985) 

1.6989 
(0.0894) 

1.4214(0.1098) 1.7700 
(0.1021) 

Table 1. MLEs,BEs and MSEs for the parameters 1 2 3( , , , )λ λ λ β at 1 2 31, 1.2, 0.7, 1.5λ λ λ β= = = =  
From table 1, it can be observed that the MSEs of the MLE and BE approach are 

smaller under different masking levels and censoring schemes. In addition, the Bayesian 
estimates yields smaller MSEs than the MLE approach. However, as the masking level 
increases the accurate of the both estimation methods are less poor in terms of the MSEs 
since less information among components is available. 
 
5. Conclusions 
In this article, we consider the constant-stress partially accelerated life test on series 
system with masked data under progressive Type II censoring. Both the MLEs and BEs of 
the unknown parameters and acceleration factor are derived. The effectiveness of two 
methods are compared through the Monte Carlo simulation under different masking 
levels and censoring schemes. The results show that BEs has more accurate results than 
the MLE approach.  
 
Acknowledgements 
The work is supported by the National Natural Science Foundation of China (71401134，
71571144, 71171164,）and the Natural Science Basic Research Program of Shaanxi 
Province (2015JM1003),The International Cooperation and Exchanges Program in 



Xiaolin Shi and Yimin Shi 
 

36 

Science and Technology of Shaanxi Province (2016KW-033). 
REFERENCES 

 
1. J.S.Usher and T.J Hodgson, Maximum likelihood analysis of component reliability   

using masked system life data, IEEE Trans. on Reliability, 37(5) (1988) 550–555. 
2. A.M.Sarhan, Reliability estimates of components from masked system life data, 

Reliability Engineering and System Safety, 74(1) (2001)107-113. 
3. M.Sarhan and D.Kundu, Bayes estimators for reliability measures in geometric  

distribution model using masked system life test data, Computational Statistics and    
Data Analysis, 52(4) (2008)1821-1836. 

4. L.Kuo, T.Y.Yang, Bayesian reliability modeling for masked system lifetime data,   
Statistics & Probability Letters, 47 (2000) 229-241. 

5. X.Shi, Estimation of component reliability using censored and masked system 
lifetime data, ICIC Express Letter, 8(8) (2014)2231-2237. 

6. R.Wang, N.Sha, B.Gu and X,L.Xu, Parameter Inference in a Hybrid System With 
Masked Data, IEEE Trans. on Reliability, 64(2) (2015) 636-644.  

7. T.H.Fan and W.L.Wang, Accelerated life tests for Weibull series systems with   
Masked data. IEEE Trans. on Reliability, 60 (2011) 557-569. 

8. T.H.Fan, T.M.Hsu and K.J.Peng, Bayesian inference of a series system on Weibull   
step- stress accelerated life tests with dependent masking, Quality technology &   
quantitative management, 10 (2013) 291-303. 

9. T.H.Fan and T.M.Hsu, Accelerated life tests of a series system with masked interval 
data under exponential lifetime distributions, IEEE Trans. on Reliability, 61 (2012) 
798-808. 

10. A.C.Xu, Y.C.Tang and Q.Guan, Bayesian analysis of masked data in step-stress 
accelerated life testing. Communications in Statistics Simulation and Computation, 
43 (2014) 2016-2030. 

11. A.C.Xu, S.Basu and Y.C.Tang, A full Bayesian approach for masked data in 
step-stress accelerated life testing. IEEE Trans. on Reliability, 63 (2014) 798-806. 

12. T.A.Abushal and A.A.Soliman, Estimating the Pareto parameters under progressive  
censoring data for constant-partially accelerated life test, Journal of Statistical  
Computation and Simulation, 85(5) (2015) 917-934. 

13. A.M.Abd-Elfattah, A.S.Hassan and S.G.Nassr, Estimation in step-stress partially  
accelerated life tests for the Burr type XII distribution using type I censoring, 
Statistical Methodology, 5 (2008) 502-514. 

14. A.A.Ismail, Bayes estimation of Gompertz distribution parameters and acceleration  
factor under partially accelerated life tests with type-I censoring. Journal of 
Statistical Computation and Simulatio, 80 (2010) 1253-1264. 

15. A.A.Ismail, Estimating the parameters of Weibull distribution and the acceleration      
factor from hybrid partially accelerated life test, Applied Mathematical Modelling, 
36(7) (2012) 2920-2925. 

16. W.R.Gilks, P.Wild, Adaptive rejection sampling for Gibbs sampling, Applied 
Statistics, 41 (1992) 337-348. 


