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ABSTRACT 
This paper deals with developing an effective theorem related to solving transportation 
problems. In view of this theorem one can find out the nature of the optimal solution and 
how much the total transportation cost is changed after adding (or subtracting) a constant 
quantity to each unit cost in the transportation cost matrix. A numerical example is 
presented to illustrate and verify the theorem.  
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1. Introduction 
The transportation problem (TP) is a special type of linear programming problem which 
deals with shipping a single homogeneous commodity from several sources (e.g. plants, 
factories etc.) of supply to various destinations (e.g. warehouses, markets etc.) of demand 
in such a way that the total transportation cost is a minimum. It has wide applications in 
Management Sciences, Engineering and Technology. The model can be extended in a 
direct manner to cover practical situation in the areas of inventory control, employment 
scheduling, personnel assignment, cash flow statements and many others. The basic 
transportation problem was first introduced by Hitchcock [1] and further developed by 
Koopmans[2]. As it is basically a linear programming problem it can be solved by regular 
simplex method. In 1951 Dantzig [3] solved it by simplex method. However this method 
is complex and inefficient especially for large scale transportation problem. Thus the 
special structure of the TP allows the development called transportation technique that is 
computationally more efficient. There are two stages in transportation technique: finding 
initial basic feasible solution (IBFS) and testing the solution for optimality. In literature 
several heuristic methods are available to obtain initial basic feasible solution, such as 
North-West Corner Rule, Least Cost Method, Row Minima, Column Minima, Vogel 
Approximation Method (VAM) [4], Russell Approximation Method [5] etc. For testing 
optimality of the initial basic feasible solution, Modified Distribution Method (MODI) is 
frequently used. Charnes and Cooper [6] developed the Stepping Stone Method which 
provides an alternative way of determining the optimal solution. In 1990 Kirca and Satir 
[7] developed a heuristic, called TOM (Total Opportunity Cost Method) and they used 
Least Cost Method with some tie breaking rules on the TOC matrix for generating an 
IBFS to the TP. Mathirajan and Meenakshi [8] extended the idea of Kirca and Satir using 
VAM procedure. Nagoor Gani and Abdul Razak [15] proposed a parametric approach for 
two stage fuzzy transportation problem in which supplies and demands are trapezoidal 
fuzzy numbers. Recently a literature search revealed a few heuristic methods such as 
Improved VAM (IVAM) [9], Zero suffix method [10], ASM [11], Zero point method 
[12] and Average Cost Method (ACM) [13] for finding optimal solution. Pandian and 
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Natarajan [14] proposed a new method for finding an optimal more-for-less (MFL) 
solution for transportation problems with mixed constraints. In this paper we develop a 
theorem which provides the nature of the optimal solution and the variation of the total 
transportation cost under certain imposed conditions. 
 
 2. Mathematical formulation 
Let  ia   be the number of supply units required at source ),........,2,1( mii = , jb  be the 

number of demand units required at destination ),........,2,1( njj =  and ijc  represents the 

unit transportation cost for transporting the units from source i  to destinationj . If ijx   is 

the number of units shipped from source i  to destinationj , the equivalent linear 
programming model will be 
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A transportation problem is said to be balanced if the total supply from all sources equals 
the total demand in all destinations. 
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Otherwise, it is called unbalanced. The balanced condition is both necessary and 
sufficient condition for the existence of a feasible solution to the transportation problems. 
In matrix form the transportation problem can be summarized as  

 D1 D2 ⋯  Dn Supply 
 
O1 

x11  x12  
⋯  

x1n  
a1  c11  c12  c1n 

 O2 
x21  x22  

⋯  
x2n  

a2  c21  c22  c2n 

⋮  ⋮  ⋮  ⋯   ⋮  ⋮  

Om 
xm1  xm2  

⋯  
xmn  

am  cm1  cm2  cmn 
Demand b1 b2 ⋯  bn  

 
3. Proposed theorem 
Theorem 1. If a constant k  is added (or subtracted) to each entry in the p-th  row in a 
transportation matrix [ ]ijc  then the optimal solution remains unaltered and the total 

transportation cost is increased (or decreased) by k × supply at p-th source. 
Proof: 
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Let { }njmixij ........,,2,1;......,,2,1: ==  be the optimal solution with respect to the 

original cost matrix [ ]ijc . Then the total cost (objective function), 
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After adding (or subtracting) a constant k  to each element in the p-th row of the cost 
matrix [ ]ijc , the new total cost (objective function) becomes 
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where =pa supply at p-th source. 

Here pak.  is constant (independent of ijx ). Thus if z is minimum for a set of values of 

{ }ijx  of  the original problem then z′ is also minimum for the same set of values of { }ijx  

of the new problem as z′  differs from z  only by a constant. Hence the total 
transportation cost is increased (or decreased) by pak. . 

In a like manner, it can be shown that on adding (or subtracting) a constant k  to 
every cost element of the q-th column in a transportation matrix [ ]ijc , the optimal solution 

remains the same, while the total transportation cost is increased (or decreased) by qbk. , 

where qb =demand at q-th destination. 

By virtue of Theorem 1, we can develop the following Theorem in a general form. 
 
Theorem 2. If  a constant is added (or subtracted) to each element of the transportation 
cost matrix, an optimal solution of the original problem remains optimal for the new 
problem; and the total transportation cost is increased (or decreased) by constant× total 
supply(or total demand). 
Proof: Let { }njmixij ........,,2,1;......,,2,1: ==  be the optimal solution with respect 

to the original cost matrix [ ]ijc . Then the total cost (objective function), 
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 If a constant k  is added (or subtracted) to each element of the cost matrix [ ]ijc  and z′  

denotes the total cost for the modified cost matrix [ ]kcij ±  then 
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Since .k total supply is constant ( independent of ijx ), it is clear that every optimal 

solution { }ijx  corresponding to the matrix [ ]ijc  is also an optimal solution corresponding 

to the matrix [ ]kcij ±  and vice versa, i.e. upon adding (or subtracting) a constant to every 

cost element of a transportation problem, the optimal solution remains unaltered, while 
the total transportation cost is increased (or decreased) by constant× total supply(or total 
demand). 
  
 4. Numerical example 
To illustrate the theorem we consider the following transportation problem: 
   

 D1 D2 D3 D4 Supply 
O1 19 30 50 10 7 
O2 70 30 40 60 9 
O3 40 8 70 20 18 
Demand 5 8 7 14  

 
Solving the problem using Vogel’s Approximation Method (VAM), the optimal 
transportation table is presented below: 
                                   

 D1 D2 D3 D4 Supply 

 
O1 

5      2  
7  19  30  50  10 

O2 
  2  7    

9  70  30  40  60 

O3 
  6    12  

18  40  8  70  20 

Demand 5 8 7 14  
  
Hence the optimal solution and the total transportation cost are 
        .74312,6,7,2,2,5 343223221411 ======= zandxxxxxx  

If we add 10 to each unit cost in the original transportation problem, the modified matrix 
becomes 
               

 D1 D2 D3 D4 Supply 
O1 29 40 60 20 7 
O2 80 40 50 70 9 
O3 50 18 80 30 18 
Demand 5 8 7 14  

   
 Solving the problem using Vogel’s Approximation Method (VAM), the optimal 
transportation table is presented below: 
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 D1 D2 D3 D4 Supply 

 
O1 

5      2  
7  29  40  60  20 

O2 
  2  7    

9  80  40  50  70 

O3 
  6    12  

18  50  18  80  30 
Demand 5 8 7 14  

 Hence the optimal solution and the total transportation cost are 
        .108312,6,7,2,2,5 343223221411 =′====== zandxxxxxx   

Thus we see that after adding a constant (10) to each cost element in the original cost 
matrix, the optimal solution remains unchanged and the total transportation cost is 
increased by 10×  34(=constant ×  total supply)=340. 
 
Again if we subtract  a constant (6) from each unit cost in the original transportation 
problem, the reduced matrix is as follows: 
                         

 D1 D2 D3 D4 Supply 
O1 13 24 44 4 7 
O2 64 24 34 54 9 
O3 34 2 64 14 18 
Demand 5 8 7 14  

 Solving the problem using Vogel’s Approximation Method (VAM), the optimal 
transportation table is presented below: 
                               

 D1 D2 D3 D4 Supply 

 
O1 

5      2  
7  13  24  44  4 

O2 
  2  7    

9  64  24  34  54 

O3 
  6    12  

18  34  2  64  14 
Demand 5 8 7 14  

 
 Hence the optimal solution and the total transportation cost are 
        .53912,6,7,2,2,5 343223221411 =′====== zandxxxxxx   

Thus it is observed that on subtracting a constant (6) from each cost element in the 
original cost matrix, the optimal solution remains the same and the total transportation 
cost is decreased by 6×  34(=constant ×  total supply)=204. 
        Hence the theorem is verified. 
 
5. Conclusion 
In this paper an attempt has been made to develop a new theorem in case of solving 
transportation problems and proved it in a simple and easy way. We have also verified 
the theorem with a numerical example. It can be an important tool for the decision 
makers who are handling distribution and logistics related problems by aiding them in the 
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decision making process and providing an optimal solution in a simple and effective 
manner. 
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