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In hyperthermia treatment, the tumour cells inside the tissue are heated to a  beneficial 
therapeutic temperature ( desired temperature) so as to kill the tumour cells by avoiding the 
damage of the healthy tissue surrounding the tumour cells (Arora et al.[1], Butkovasky [2], 
Cheng et al.[3], Dhar and Sinha [5], Das et al. [6], Kowalski and Jin [8]) . 
 
The chapter 1 is the ‘Introduction’. This chapter deals with the concept of hyperthermia 
treatment together with methodologies adopted in course of analytical investigation of eight 
optimal control problems in single – layered (homogeneous) and multi – layered (non-
homogeneous) biological tissues. This chapter also focuses the prospect of analytical study of 
those optimal control problems on further developments in future research work.  
 
In this thesis, the optimal control problems are analytically investigated on the temperature 
distribution of the tissue described by Pennes bio-heat equation. 
 
In the first four chapters (chapter 2 – 5),  analytical investigations of four optimal control 
problems on the temperature distribution of single-layered (homogeneous) tissue, described 
by one-dimensional Pennes bio-heat equation, are carried out in order to attain therapeutic 
beneficial (desired) temperature at the tumour embedded inside the tissue. The desired 
temperature of the tumour is attained by controlling input control variables. The input control 
variables are taken as the heating power, unusually induced by microwave, and the surface 
cooling temperature.  
 
 As the structure of the biological tissue is multi-layered (non homogeneous), four optimal 
control problems on the temperature distribution for a system, described by one-dimensional 
Pennes bio-heat equation in a multi-layered tissue, consisting of skin, fat, muscle and tumour 
layers, are analytically investigated in the last four chapters (chapter 6 – 9). The therapeutic 
beneficial ( desired) temperature at the tumour , embedded inside the tissue, is attained by 
controlling input variables.  
 
In a system of distributed parameters, the distribution of temperature of the homogeneous 
tissue is described in space and time by Pennes bio-heat transfer equation given by (Deng and 
Liu[4]), 
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 where )(,,),,(,,, tQbtxkc aχχρ  h and u(t) represent  the density of the tissue, specific heat 
of the tissue, thermal conductivity of the tissue, temperature of the tissue , arterial 
temperature , product  of flow and heat capacity of blood time dependent heating power 
induced by microwave,  heat transfer coefficient between skin and ambient air and surface 
cooling temperature respectively.  
 
 In order to raise the temperature of the tumour inside the tissue to it’s beneficial therapeutic 
value, heat is generated in the tissue by microwave which is one of the most commonly used 
heating method. Thus, it is worthwhile to investigate analytically the distribution of 
temperature of the tissue so as to achieve the beneficial therapeutic temperature of the tumour 
inside the tissue by controlling microwave power level and surface cooling temperature 
which are accessible to direct controls (Wagter[12]).   
            
Loulou and Scott [10] developed a method to optimize HIFU (High intensity focused 
ultrasound) treatments based on the resolution of an inverse heat conduction problem using 
‘Conjugate gradient method’, where one-dimensional single layered Pennes bio-heat transfer 
equation was considered. They showed that conjugate gradient method  provided an efficient, 
rapidly convergent and straightforward approach for solving a complex hyperthermia control 
problem . 
 
On this viewpoint, in chapters 2, 4 and 5, the analytical investigations of optimal control 
problems on the distribution of temperature in the tissue, described by one-dimensional 
single-layered (homogeneous) Pennes bio-heat transfer equation, are carried out with the aid 
of Conjugate gradient method. Here the beneficial therapeutic (desired) temperature at the 
tumour inside the tissue is attained by controlling optimal heating power induced by 
microwave and surface cooling temperature   
 

          The conjugate gradient method devices the basis from the variational principle and transforms 
the original direct problem to the solution of two subnormal problems, namely, the direct 
problem in variation and the adjoint problem. (Loulou and Scott[10]).  

 
In Chapters 2, an optimal control problem on the distribution of temperature in the tissue, 
described by one-dimensional Pennes bio-heat transfer equation in single-layered tissue 
(homogeneous), is analytically investigated such that a beneficial therapeutic (desired) 
temperature at a particular point of location of the tumour inside the tissue can be attained. 
The desired temperature of the tumour is attained during a specific time by controlling 
opitmal heating power induced by microwave )(tQ  when the surface cooling temperature is 
taken as constant throughout the fixed operation of the process. 
 
In course of analytical investigation of this problem with the aid of conjugate gradient 
method under calculus of variation, it is found, from the condition for optimality of the 
control variable, that )(tQ is a singular control. Thus, for the sake of simplicity, one specified 
discrete time instant is taken which is considered as a switching time 1t (say).  
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The objective of this present problem is to find out the optimal values of control )(tQ  during 
the time intervals ),0( 1t and ),( 1 Tt , when T is the total time of operation of the process. The 
corresponding values of Q(t) are obtained by computer simulation from the condition for the 
optimality of control variable )(tQ . 
 
It is observed that the temperature distributions of the tissue on the left side of the tumour at 

6=x  mm, where the desired temperature C043  is attained, are always less than C043  of the 
tumour. Further, the temperature on the right side of the tumour decreases steadily to C037  
(artery temperature). This steady decrease of temperature may be accounted for as the effect of 
switching off  the volumetric heat generation rate )(tQ )( 3−Wm  in the second time segment of 
the operation of process ),( 1 Tt  for switching time 1t . As the temperature of the healthy tissue 

on the both sides of the tumour stay below the desired temperature C043  of the tumour, thus 
the damage of the healthy tissue is avoided when the temperature of the tumour rises to C043  
at the switching time. It requires mentioning that as the total time of operation increases from 

sT 600=  to sT 1000= , the time in the first segment of operation ),0( 1t increases with the 

corresponding decrease of )(tQ )( 3−Wm in this segment. 
 
In Chapter 3, a distributed optimal control problem on the temperature distribution, described 
by Pennes bio-heat equation in one-dimensional homogeneous tissue is analytically 
investigated such that a beneficial therapeutic desired temperature at a particular  point of 
location of tumour  inside the tissue can be achieved at the end of total time of operation of 
the process. The desired temperature of the tumour is attained by controlling both optimal 
time dependent heating power induced by microwave )(2 tQ )( 2−Wm  and surface cooling 

temperature )(tu )(0 C . Here, the spatial heating power ),(1 txQ induced by microwave is 

constructed according to well known Beer’s law, given by )(),( 21 tQetxQ xββ −= , where Q2 

(t) (Wm-2) signifies time dependent heating power, β  is scattering coefficient and x  is the 
distance of a point of the tissue from it’s surface along x-axis. 
 
 As methodology, the ‘ Maximal Principle ’ is applied on the time dependent ordinary 
differential equations which are obtained by discritizing the space derivatives, described by 
one-dimensional homogeneous Pennes bio-heat equation, with the aid of finite difference 
method.  
 
 Then, on the basis of ‘Maximal Principle’, a system of ordinary differential equations of 
adjoint functions together with the conditions for optimality of the control variables are 
obtained in the form of ‘Hamiltonian function’ (Golub [8], Lee and Markus [10]). 
 
In course of analytical investigation of this problem, it is seen that the optimal control 
variables )(2 tQ  and )(tu  are singular controls. Thus, we have taken only two specified 
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switching times 1t (say) and 2t (say), for the sake of simplicity, in the consideration of 
distributions of )(2 tQ and )(tu  respectively. 
 
It is observed that the temperature of tissue increases on the left side of the tumour, located at 

6=x mm, till it attains the beneficial desired temperature C043 of the tumour at the end of 
operation of the process and then the temperature of the tissue on the right side of the tumour 
decreases steadily to C037 (arterial temperature). It is to note that as the total time of 
operation of the process increases from sT 600= to s1000 , the first time segment of 
operation of the process ),0( 1t  increases with the corresponding decrease of )(tQ )( 2−Wm  in 

this segment for the switching time 1t . The surface cooling temperature )(tu )(0 C  increases 

in the first time segment of operation of the process ),0( 2t  as the total time of operation 
increases from sT 600= to s1000  for the switching time 2t . 
 
It is seen that the value of the induced heating power Q(t) (Wm-2) in the first time segment of 
operation of the process is much greater than it’s value applied on the second time segment of 
operation of the process. In course of analytical observation on the distribution of the surface 
cooling temperature u(t) (0C), it is found that the value of u(t) (0C) is greater in the first time 
segment of operation (O, t2) than it’s value in the second time of operation of the process (t2, 
T). 
  
Further, it is to note that the decrease of temperature of the tissue on the right side of the 
tumour is rapid than the increase of temperature of the tissue on the left side of the tumour.  
 
Again, it is seen that the temperature of the healthy tissue on the both sides of the tumour are 
less than desired rise of temperature C043 and thus the damage of the healthy tissue is 
avoided.  
 
In chapter 4, we would like to investigate analytically an optimal control problem in a system 
described by one dimensional homogeneous Pennes bio-heat equation, so as to attain the 
desired temperature *χ  at the point of location of the tumour 1= xx . Inside the tissue. The 

desired temperature *χ  is attained during a specific time for fixed total time of operation of 
the process such that temperatures of the two neighbouring points, specified on the both sides 
of the point of tumour, can be achieved below the temperature of the tumor *χ  to avoid the 
damage of the healthy tissue at those points. Here, both optimal heating power Q(t), induced 
by conducting heating probe inserted at the tumour site at 1xx = , and surface cooling 
temperature )(tu  are taken as input controls.  
 
 The performance criterion can be written as 
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which is to be minimized where T is the total time of operaiton of the process.  
             

Here,  32 , xx are two specified neighbouring  points in normal tissue which lie on the left and 

right side of the location of the tumour respectively and 
*

1θ , 
*

2θ are the corresponding desired 

temperatures below the temperature of the tumour 
*χ . A  is the weighting factor to bias the 

rise of temperature of the tumour and )( ixx −δ )3,2,1( =i are the Dirac –delta functions. 
 
 In course of analytical investigation of this problem, it is seen that the optimal control 
variables )(tQ  and )(tu . are singular controls. For simplicity , we have taken two switching 
times 1t and 2t  in consideration of the distribution of )(tQ  and )(tu  respectively.   
 
Here, the tumour is located at the mx 006.=  and the two neighbouring points mx 005.= and 

mx 007.= are specified on the left and right side of the tumour respectively. Here, C043 , 
C05.41  and C041  are the desired temperatures to be attained at the respective points 

,005. mx = m006. and m007. . 
 
It is observed that the temperature of the tumour at the point of location mx 006.= attains 
desired temperature C043 at times sst 400,300= and s700 respectively. These are the 
switching times of the heating power )(tQ for the corresponding total time of operation of the 

process ssT 800,600= and s1000 . 
 
In course of analytical observations, it is seen that the temperatures of the normal tissue, 
located at the neighbouring points mx 005.= and mx 007.= on both sides of the point of 
tumour , attain temperatures very close to the desired temperatures C05.41  and C041  
respectively. It is also observed that temperature distributions of the tissue on the left side of 
the tumour at  mx 006.=   increases steadily till it attains the desired temperature C043  of 
the tumour and then decreases rapidly to the arterial temperature C037 . 
 
It is also found that the heating power )(tQ is applied in the first time segment of operation 

),0( 1t and then is switched off in the second time segment of operation ),( 1 Tt  when 1t  is the 
switching time of )(tQ . The steady decrease of the temperature of the tissue on the right side 

of the tumour to C037  may be accounted for the effect of switching off the heating power 
)(tQ in the second time of operation ),( 1 Tt .  

 
Further, it is to note, that values of the surface cooling temperature )(tu  applied in the first 
time segment of operation ),0( 2t is always less than it’s value in the second time segment of 
operation ),( 2 Tt . Here 2t  signifies the switching time of the surface cooling temperature 
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)(tu . It requires mentioning that the switching time of )(tQ  is always less than the switching 

time of )(tu for total time of operation of the process ssT 800,600=  and s1000 . 
 
It is also observed that the position of the highest temperature of the tissue is attained at the 
point of location of the tumour, where the heating power is induced by inserting a conducting 
heating probe. Thus the highest temperature is attained at the position of the point heat source 
. This rise of highest temperature at the point of location of the heat source, obtained from the 
above observation, is in agreement with those found by (Deng and Liu [9]) in course of 
analytical investigation on the temperature distribution of the tissue due to the application of 
the heating power induced by inserting a conducting heating probe at the tumour site. 
 
It is also observed that, as the total time of operation of the process increases from sT 600=  
to s1000 , the time in the first segment of operation ),0( 1t  increases with the corresponding 
decrease of )(tQ in this segment. 
 
It was found that a typical treatment with local hyperthermia consists of raising the 
temperature of the tumour to about C04340−  (Deng and Liu[4], Cheng, et al. [3]). As there 
is a range of beneficial therapeutic (desired) temperature of the tumour to be raised in 
hyperthermia treatment, an optimal treatment goal may be assumed so that all temperatures of 
the tumours, located at some specific points along it’s entire length, are to attain a specified 
beneficial temperature C043 (say). This attempts to uniformize the temperature of all 
tumours, located at some specific points across the entire length of the tumour, to a desired 
temperature C043  (Cheng, et al. [3]). 
 
 From this viewpoint, in chapter 5, we would like to investigate analytically an optimal 
control problem on the distribution of temperature in biological tissue , described by one-
dimensional Pennes bio-heat equation in a single layered tissue, so as to attain the therapeutic 
beneficial (desired ) temperature *χ (say) on q number of tumours, located at specific points 

qxxxx ,....., 21=  across the entire length of the tumour inside the tissue. The desired 

temperature *χ  is attained during a specific time by controlling optimal microwave induced 
heating power )(tQ applied on the surface of the tissue when the surface cooling temperature 
is taken as constant throughout the fixed time of operation of the process  
 
The objective function thus stands as [5]  
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Here LTtx ,),,(χ and ( )ixx −δ  designate the temperature of the tissue, total time of operation 
of the process, length of the tissue and Dirac-delta function respectively. 
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 In course of analytical investigation performed by conjugate gradient method for obtaining 
the condition for optimality of the control variable )(tQ i.e., time dependent heating power 
induced by microwave, it is found that optimal control )(tQ  is a singular control. 
 
For the sake of simplicity, we consider one switching time 1tt =  in case of control )(tQ . Thus 

)(tQ  assumes two extreme values within the intervals ),0( 1t and ),( 1 Tt   when  T  is the total 
time of operation of the process. 
 
It is seen that the heating power )(tQ induced by microwave is applied on the first time 

segment of operation of the process ),0( 1t and is switched off in the second time segment of 

operation ),( 1 Tt  where 1t and T are switching time and total time of operation of the process 
respectively. 
 
It is observed that distributions of temperature of the tissue on the left side of the tumour, lies 
between .005m-.006 m, are always less than C043  of the temperature of the tumour. Further, 
the temperature on the right side of the tumour decreases steadily to C037  (arterial 
temperature) which can be accounted for as the effect of cutting off the  heating power Q(t) 
(Wm-3) in the second time segment of operation of the process. Thus the damage of normal 
tissue is avoided as the temperature on the both sides of the length of the tumour stay below 
the temperature of the tumour C043 . Since the computations have been carried out for 
various values of the total time of operation of the process T , the optimal heating power )(tQ  
as well as the switching time 1t  during which )(tQ  is operative have been changed. 
Considering this aspect, it is noteworthy to mention that as the total time of operation of the 
process increases from T = 600s to 1000s, the first time segment of operation ),0( 1t  
increases with corresponding decrease of Q(t) (Wm-3) in this segment. 
 
In course of analytical investigations of last four chapters from chapter 6 – 9, four optimal 
control problems on the distribution of temperature in one-dimensional multi layered tissue, 
consisting of skin, fat, tumour and muscle layers, are carried out where each layer is assumed 
as  homogeneous. The temperature distribution in multi-layered tissue is described in space 
and time by one-dimensional Pennes bio-heat equation with usual parameters iii cbk ,,  and iρ  

where iii cbk ,,  and iρ  represent the thermal conductivity of the tissue , product of flow and 

heat capacity of blood, specific heat of tissue  and density of the tissue in thi  layer 
respectively (Dhar and Sinha [5], Nachman and Turgeon [11], Wagter [12]). 
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The objective of the optimal control problems presented in chapters 6 – 9 is to find out the 
optimal values of control variables in one dimensional multi-layered tissue where the 
methodology adopted is the usual ‘Maximal Principle’ with a suitably constructed 
‘Hamiltonian Function’ followed by the use of a variant of finite difference method . 
 
In this method, the space derivatives in Pennes bio-heat transfer equation with distributed 
parameters are discritized to a system of lumped parameters, described by time dependent 
ordinary differential equations, with the aid of finite difference method. 
Then, on the basis of ‘Maximal Principle’ a system of ordinary differential equations of 
adjoint functions are obtained together with conditions for optimality of the control variables 
in the form of ‘Hamiltonian function’ where the calculus of variation and integrating by parts 
are used (Golub [7], Lee and Markus [9]). 
 
 We would like to present here, an as example, the methodology for obtaining the condition 
for optimality of control variable in a system described by time dependent ordinary 
differential equation given by (Golub [7] , Lee and Markus [9]) 
 

                  { })(),()( tQtf
dt

td χχ
= ,     Tt ≤≤0         (1) 

  with initial condition 0)0( χχ =                               (2)    
 
 Here, )(tχ designates the temperature and )(tQ is the control variable. 

Let us choose an objective function { }∫
T
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0
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optimization criterion which is to be minimized. 
According to ‘Maximal Principal’ , we would like to formulate a functional J, given by   
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where  )(tψ  signifies adjoint function and the Hamiltonian function H  is defined as 

{ } { })(),()(),()( tQthtQtftH χχψ −=  ( Golub [7]; Butkovosky [2], Lee and Markus [9]). 
 
In order to obtain the condition for the optimality of the control variable )(tQ , we adopt the 
procedure to consider the stationary condition 0=Jδ  for any allowed functions 

)(),( tQt δδχ and )(Tδχ   (Butkovosk [2], Golub [7]). 
 
Here Jδ  represents a small variation of J due to small change )(tδχ , where )(tδχ  signifies a 
small change of )(tχ  due to change of control variable  )(tQ . 
Thus, using calculus of variation and integration by parts, we obtain 
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From the condition 0=Jδ  (for ,0)0( =δχ ) we arrive to a system of equation of adjoint 
function )(tψ in terms of Hamiltonian function H , given by (Golub,[7]).  

χ
ψ
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Ht

dt
d )( , 0)( =Tψ          (4) 

 The condition for the optimality of )(tQ  can be written as , 0
)(
=

∂
∂

tQ
H .         (5) 

From the conditions of optimality of controls )(tQ , i.e. 0
)(
=

∂
∂

tQ
H , one can obtain the 

optimal values of the control )(tQ  by solving equations (1) and (4). 
 
In chapter 6, we have investigated analytically optimal distribution of time dependent heating 
power )(2 tQ )( 2−Wm  described by one dimensional Pennes bio-heat  equation in a multi-
layered tissue, consisting of skin, fat, muscle and tumour layer, so as to attain therapeutic 
beneficial desired temperature across the entire length of the tumour layer at the end of fixed 
time of operation of the process. The desired temperature across the entire length of the 
tumour, embedded inside the muscle layer, is achieved by controlling optimal time dependent 
heating power )(2 tQ )( 2−Wm  induced by microwave which is constructed according to Beer’s 
law. 
 
The methodology adopted here is the usual ’Maximal Principle’ with a suitably constructed 
‘Hamiltonian’ followed by the use of a variant of finite difference method .  
 
In course of analytical observation on the numerical distribution of )(2 tQ )( 2−Wm , it is found 

that the value of )(2 tQ )( 2−Wm  is maximum at the beginning of the process and then 
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decreases steadily as time of the operation of the process increases. The value of 
)(2 tQ )( 2−Wm  ultimately approaches to zero at the end of operation of the process. 

The distribution of temperature of the tissue due to the application of the calculated optimal 
distribution of heating power )(2 tQ )( 2−Wm  is then obtained numerically from which it is 
seen that the temperature across the entire length of the tumour attains near about  beneficial 
therapeutic temperature C043 at the end the time of operation of the process. Further, it is 
observed that the temperature on the left side of the length of the tumour steadily increases 
till it attains the beneficial desired temperature near about  C043  across it’s entire length and 
then decreases to the arterial temperature C037 . 
 
Thus, all together, it is found that the damage of the healthy tissue is avoided as it’s 
temperature stays below the desired temperature C043  of the tumour.  
 
In chapter 7, an optimal control problem on the temperature distribution described by one- 
dimensional Pennes bio-heat equation in multi-layered tissue, consisting of skin, fat, tumour 
and muscle layers, is analytically investigated to achieve a therapeutic beneficial (desired) 
temperature across the entire length of the tumour inside the tissue. The desired temperature 
is attained during a specific time  by controlling optimal time dependent heating power  when 
surface cooling temperature is taken as constant throughout the fixed total time of operation 
of the process so that the temperature across the entire length of the first muscle layer 
(preceding tumour layer) attains temperature below the desired temperature of the tumour 
which attempts to avoid overheating of this muscle layer. Here the spatial heating power 

),( txQ  is constructed according to Beer’s law. 
 
The objective of this analytical investigation is to obtain the optimal values of the heating 
power )(2 tQ )( 2−Wm . It is found, from the optimal condition of )(2 tQ )( 2−Wm , that 

)(2 tQ )( 2−Wm  is a singular control. 
 
For the sake of simplicity, one switching time 1tt =  (say) is taken during which the extreme 
values of the optimal heating power )(2 tQ (induced by microwave) operates within the 
intervals ),0( 1t and ),( 1 Tt  where T signifies total time of operation of the process. 
 
It is finally observed that 95% of the length of the tumour is being heated to 97.4% of it’s 
therapeutic beneficial temperature C043  at the switching time 1tt =  of the heating power 

)(2 tQ )( 2−Wm . Here the heating power is operative in the first time segment  ),0( 1t  of total 
time of operation of the process T and then it is switched off in the second time segment of 
operation ),( 1 Tt . Further, it is seen that the temperature of the tissue in the first muscle layer 

on the left side of the length of the tumour increases till it attains near about C043  and then 
after attaining C043  (desired temperature of the tumour) decreases steadily to approach 
arterial temperature C037 . 
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In Chapter 8, an  analytical investigation of optimal control problem on the temperature 
distribution of the tissue, described by one-dimensional multi-layered Pennes bio-heat 
transfer equation, is performed in hyperthermia. A therapeutic beneficial desired rise of 
temperature at the point of location of the tumour embedded inside the muscle, consisting of 
skin, fat, muscle layers, is attained during a specific time by controlling both optimal heating 
power, induced by inserting a conducting heating probe at the tumor site, and surface cooling 
temperature when the total time of operation of the process is fixed. Here T is taken as total 
time of operation of the process.  
 
In course of analytical investigation of this problem, it is found that the time dependent 
heating power )(tQ )( 3−Wm , induced by inserting a conducting heating probe at the tumour 

site, and surface cooling temperature )(tu )(0 C are singular controls. We consider one 

specified switching time 1tt =  (say) of the heating power )(tQ and another specified 

switching time 2tt =  ( say ) of the surface cooling temperature )(tu . 
 
It is seen that the desired temperature C043  is attained at the point of location of the tumour 
at the switching time 1tt =  of the heating power )(tQ , when )(tQ  is applied on the time 

segment ),0( 1t  and is switched off on the time segment ),( 1 Tt . It is also observed that the 
temperature of the tissue on the left side of the point of location of the tumour increases 
steadily till it attains desired temperature C043  whereas on the right side of the tumour the 
temperature of the tissue decreases rapidly to C037  (arterial temperature) which can be 
accounted for due to cutting off the heating power )(tQ in the time segment ),( 1 Tt .  
 
In chapter 9, an optimal control problem on temperature distribution described by one-
dimensional Pennes bioheat equation in multi layered tissue, consisting of skin, fat and 
muscle layers, is analytically investigated so as to achieve beneficial therapeutic (desired) 
temperature at a particular point of location of the tumour imbedded inside the muscle layer. 
The desired temperature at the point of tumour is attained during a specific time by 
controlling optimal time dependent heating power ),(2 txQ )( 2−Wm  induced by microwave 
when the surface cooling temperature is taken as constant throughout the fixed total time of 
operation of the process. Here the spatial heating power  ),(1 txQ )( 3−Wm applied on the 

surface of the tissue is constructed according to Beer’s law, given by ),(1 txQ = )(2 tQe xββ − , 
where the control variable )(2 tQ signifies time dependent heating power,β  is the scattering 
coefficient and x  is the distance of a point from the surface of the tissue. 
 
Here, in course of investigating the optimal control problem on the temperature distribution 
in a multi-layered tissue, the space derivatives in one dimensional non-homogeneous Pennes 
bio-heat equation are discritized to a system of lumped parameters described by time 
dependent ordinary differential equations using finite difference method. 
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‘Maximal Principle’ is then applied on time dependent ordinary differential equations and a 
system of ordinary differential equations of adjoint functions are obtained together with 
condition for optimality of control variable in the form of ‘Hamiltonian Function’ where 
calculus of variation and integrating by parts are used . 
 
In analytical observation, it is seen that the optimal heating power )(2 tQ )( 2−Wm  is a singular 

control. For the sake of simplicity , one switching 1tt = is taken during which the extreme 
values of the microwave heating power )(2 tQ operates within the intervals ),0( 1t and ),( 1 Tt  
where T  signifies total time of operation of the process. 
 It is finally observed that the temperature of the tumour located at particular point  attains 

%7.98  of the therapeutic beneficial (desired ) temperature C043  at the switching time 1t  of 

the microwave induced heating power )(2 tQ )( 2−Wm . It is further seen that heating power 
operates in the first segment of operation ),0( 1t and then the heating power is switched off in 
the second time segment of operation ),( 1 Tt . The temperature of the tissue on the left side of 

the tumour increases till it attains near about C043  and  after attaining the desired 
temperature near about C043 , the temperature of the tissue on the right side of the tumour 
decreases steadily to arterial temperature  C037 . 
 
In Chapter 10, scope of future developments of research work on the aspect of optimal 
control problems in hyperthermia, analytically investigated in this thesis, are mentioned.  
 
Pennes bio-heat equation describes the thermal behavior based on classical Fourier law which 
assumes the thermal disturbance that propagates with an infinite speed. However, due to the 
simplicity and validity, the Pennes bio-heat model is commonly used in optimal control 
problems for the distribution of temperature of the tissue in hyperthermia treatment.   

As heat conduction in biological tissue is accomplished by interaction between the blood and 
the tissue, the propagation of the thermal disturbance is always at a finite speed. Thus, a dual-
phase-lag (DPL) heat conduction model, which is based on the well-known two phase lags 
concept to interpret the non-Fourier heat conduction phenomena, was developed . 

In Magnetic Fluid Hyperthermia (MPH) as a modality for cancer treatment, magnetic particles 
are localized in the diseased tissue. An alternating magnetic field is then applied in the tissue, 
which heats the magnetic particles by magnetic hysteresis losses. In this ideal hyperthermia 
treatments, the decreased cells (tumour) is selectively destroyed without damaging the 
surrounding healthy tissue. Among other hyperthermia modalities including microwave, laser 
and ultrasonic wave-based treatments, MPH has the maximum potentiality for heating 
selective targets . 

Thus optimal control problems in hyperthermia treatment, analytically investigated in this 
thesis, may usually focus a good insight and useful guideline on the optimal distribution of 
temperature field throughout tie tissue (including tumour and healthy tissue) by incorporating 
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the concept of dual-phase –lag (DPL) heat conduction model. Further, analytical investigation 
on optimization problems to determine the optimum heating patterns, induced by magnetic 
particle injections in the tumour, can also be studied on the background of optimal control 
problems analytically investigated in this thesis. 
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