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ABSTRACT
Many available techniques for time series modelsgume linear relationship among
variables. However in some situations, variations data do not exhibit simple
regularities and are difficult to model accuratelyinear relationship and their
arrangements for describing the behaviour of sath dre often found to be inadequate.
Since many real life data are nonlinear, thereedrto investigate which models can best
captured data that are linear as well as thoseatigamonlinear. This paper examined the
performances of the following nonlinear time seriesdel: Self Exiting Threshold
Autoregressive (SETAR), Smooth Transition Autorsgree (STAR) and Logistic
Smooth Transition Autoregressive (LSTAR) modeldiiting general classes of linear
and nonlinear autoregressive cases at differenpleasizes. The relative performances of
the models were examined, within the context dfiwtarity, and compared with linear
Autoregressive (AR). The LSTAR was the best as $ausipe was increased for different
nonlinear autoregressive functions except in patyiab function where SETAR models
out-performed others. The performances of the fitted models increased when sample
size was increased. Finally, we demonstrated tpécagtion of the models stated earlier
on data of monthly rainfall in Nigeria between 19P(BL3. SETAR model fitted best to
the Rainfall data and LSTAR was the best when #hia das transformed to nonlinear.
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1. Introduction

A time series is a sequence of data points, meddymcally at successive points at
uniform time intervals. Time series data is anyaohtime and numbers. Data obtained
from observations collected sequentially over tizme extremely common. In business,
we observe weekly interest rates, daily closinglsfarices, monthly price indices, yearly
sales figures, and so forth. In meteorology, weesoles daily high and low temperatures,
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annual precipitation and hourly wind speeds. Ircadfure, we record annual figures for
crop and livestock production, soilerosion, andagksales. In the biological sciences,
we observe the electrical activity of the heartraltisecond intervals. In ecology, we
record the abundance of an animal species. Theflisteas in which time series are
studied is virtually endless. The purpose of tirees analysis is generally of twofold: to
understand or model the stochastic mechanism thes gse to an observed series and to
predict or forecast the future values of a seri@seld on the history of that series and,
possibly, other related series or factors.

Traditional time series analysis is based on astompof linearity and stationarity.
However, there has been a growing interest in stigdyonlinear and nonstationary time
series models in many practical problems. The dinst the simplest reason for this is that
many real world problems do not satisfy the assigngtof linearity and/or stationarity.
For example, the financial markets are one of tieasawhere there is a greater need to
explain behaviours that are far from being everr@pmately linear. Therefore, the need
for the further development of the theory and amtions for nonlinear models is
essential.

In general time series analysis, it is known thate are a large number of nonlinear
features such as cycles, asymmetries, bursts, juthpss, thresholds, heteroskedasticity
etc. Types of models that can be cast into thimmfbave been presented in my last
seminar. See also Tong (1990), Granger and Tertagi993) and Franse, and van Dijk
(2000) and Tsay(2010). Kim and Nelson (1999) presi@ comprehensive account of
different Markov switching models that have beemdusn economic and financial
research.

In this study, we considered some linear and nealintime series models and
investigate the performance of these models imdjttinear, trigonometry, exponential
and polynomial forms of autoregressive functione Tgoodness of fit for each model
with information criteria was considered in detdilsimulation study was carried out to
verify the finite sample properties of the modets ftationary data. The relative
performance of each model were examined based @n ragquare error (MSE) and
Alkaike Information Criteria (AIC).

1.1. Sdf-exciting threshold autoregressive (SETAR) model

The Threshold Autoregressive model can be congidesean extension of autoregressive
models, allowing for the parameters changing inrtfuelel according to the value of an
exogenous threshold variablg, Sf it is substituted by the past value of whickans &

= Y4 then we call it Self-Exciting Threshold Autoregsie® model (SETAR). Some
simple cases that are considered in this studgteoen as follows:

TAR Modé

_ (@6 + 1Y, + B3V, +elifSiq <7 (5)
Ve 0% + O2Y,_; + O3V, + ePifSi_q > 7
SETAR Modd

(05 + OV + O3V, +elifY, g <T ©)
ye BF + B7Ye_1 + B3V, o + efifVe g >7
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where d is the delay parameter and r is threshalidev, triggering the changes between
two different regimes. These models can be apjtiettie time series data which has a
regime switching behavior The threshold parametatisfy the innovation within thé&'i
regimeelis a sequence of identically independent normatisam variables with zero
mean and constant variaege< «(i = 1, 2.). The overall process,Yis non-linear when
there are at least two regimes with different Ime®dels. The simplest class of TAR
models is the Self Exciting Threshold Autoregress{iSETAR) models of order p
introduced by Tong(1983) and specified to order 2efjyation 3 in this work. The
popularity of SETAR models is due to their beintatigely simple to specify, estimate,
and interpret as compared to many other nonlirieer $eries models.

1.2. Smooth transition AR (STAR) mode
A criticism of the SETAR model is that its condited mean equation is not continuous.
The thresholds {fr are the discontinuity points of the conditionadan function u In
response to this criticism, smooth TAR models Hasen proposed; see Chan and Tong
(1986) and Ter"asvirta (1994) and the referenceeeth. A time series Yfollows a 2-
regime STAR(p)model of the form

p Yi_a—A p
Ye=co+ X, D0iYe—i + F (T) (c1+ 221 91:Yi) e (7)
Where d is the delay parametsnd s are parameters representing the locatioscaie
of model transition, and F(-) is a smooth transitfanction. In practice, F(-) often
assumes one of three forms—namely, logistic, expigle or a cumulative distribution
function. The conditional mean of a STAR model isveighted linear combination
between the following two equations:

p
M1t = Co T+ Z Do.iYe—i

i=1
p

Uzt = (Co +¢1) + Z@o.i + 01.0)Ye—i
i=1

The weights are determined in a continuous manr}erF[I()Yf‘sL_A]. The prior two

equations above also determine properties of a SaRel. For instance, a prerequisite
for the stationary of a STAR model is that all zeod both AR polynomials are outside
the unit circle. An advantage of the STAR modelrotlee TAR model is that the
conditional mean function is differentiable. Howgveexperience shows that the
transition parameterdand s of a STAR model are hard to estimate. Iniquéar, most
empirical studies show that standard errors ofetamates ofA and s are often quite
large, resulting in t ratios of about 1.0; see ¥eirda (1994). This uncertainty leads to
various complications in interpreting an estime&d@R model.
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1.3. Logistic smooth transition AR (L STAR) model
A more general model of logistic smooth transition autoregressive macof order p
(LSTAR(P) model) is:

Yo =F@,c;Ya) = (1 +exp — {y(Ye—qg —DN7" 8

The coefficienty,y > 0 is the smoothness parameterd the scalar ¢ is the locati
parameter and d is known as idelay parameter, the variabfg_4 is then called th
transition variabldor some d > 0 iimodel.

The main aim of this study, therefore, is to sugjgénple linear and nonline
models stated earlier that can be fitted to dateegaed from general classes of lin
and nonlinear second order autoregressive modepeltfornance in finite sample cas
was evaluated by simulatic

2. Materials and methods

Simulation studies were conducted to investigatepdrformance of autoregressive, :
exciting threshold autoregressive, Smooth tramsitiatoregressive models and logi:
Smooth transition autoregressive models for fittilifferent general classef linear and
nonlinear autoregressive time series earlier stakftect of sample size and t
stationarity of the models were examined on eadh@fieneral linear and nonlinear d
simulated. Each model is subjected to 1000 reicasimulation at ifferent sample
sizes for stationary data structu

2.1. Criteriafor assessment of the study

The goodness of fit for each model was assessen) wsimmn two criteria in time
series, rean square error and AIC. The model with lowegend is the best among t
models for the simulated dat

Alkaike Information Criteria

There are several information criteria availabled&termine the best model of al
regressive process. All of em are likelihood based. For example, the -known
Akaike information criterior(AIC) (Akaike, 1973 cited by Tsay, 2010) is defirg

AlC = — " In (likelihood) + " (number of parameters)

where the likelihood function is evaluated at thaxmmurr-likelihood estimates annis
the sample size.

Mean Squared Error

The mean squared erfSE) of an estimator measures the average of the asgjadithe
"errors", that is, the difference betwee¢he estimator and what is estimatedYis a
vector of estimated series, aY is the vector of the true values, then the (estul)
MSE

B 1 Ti . 2
MSE = ;;(}; ~Y)%
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2.2. Selection rule

We computes MSE, Residual Variance, AIC and MAPEfe50, 70, 100, 130, 150,
180, 200, 250, 300 and 400 for each case model,satatt the model that hasthe
minimum criteria values as the best. Note that aelgond order of autoregressive were
considered in each case and situation.

2.3. Models selected for smulation

Data is generated from several linear and nonliseaond orders of general classes of
autoregressive models as given below:

Data is generated from several linear and nonliseaond orders of general classes of
autoregressive models given below:

Model 1AR(2)YH = 0'3Yti—1 - 0-6Yti—2 + e

Model 2.TR(2): ¥ = 0.3sin¥;;_;) - 0.6cosY;;_,)+ &
Model 3:EX(2): Y; = 0.F;;_,+ exp(-0.6};,_,) + &
Model 4: PL(2): ¥Y=0.3Y2, — 0.6Y;_, + e,
Y;;~N(0,1)ande;; ~N(0,1) for stationary series and Y;;~N(2000,20)
ande;;~N(1000,10),
t=12,..50,150and 300.i =1,2,...,1000

The model 1, 2, 3 and 4 are linear, trigonometrypoaential and polynomial
autoregressive functions respectively with coedfits of ¥, being 0.3 and ¥ being -
0.6. Simulation studies were conducted to invetighe performance of self exciting
threshold autoregressive, Smooth transition autessgve models and logistic Smooth
transition autoregressive models for fitting difflet general classes of linear and
nonlinear autoregressive time series stated abBfiect of sample size and the
stationarity of the models were examined on eadhafieneral linear and nonlinear data
simulated.

Note that in autoregressive modeling, the innovafierror), e process is often
specified as independent and identically normaligtribbuted. The normal error
assumption implies that the stationary time seseslso a normal process; that is, any
finite set of time series observations are jointtlymal. For example, the pair {Y,) has
a bivariate normal distribution and so does any phiY'’s; the triple (Y,Y2Y3) has a
trivariate normal distribution and so does anylé¢ripf Y’s, and so forth. Indeed, this is
one of the basic assumptions of stationary dataventer, in this study, the data will be
generated under white noise assumption of staitgnand when the stationarity
assumption is violated for order of past respoasesrandom error terms to see behavior
of the models in each case. 1000 replications weee to stabilize models estimations at
different combinations of sample size (n) and mad€he white noise assumption of the
error term was also observed to make the data ateuilbe stationary. Data simulated
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were fitted to each of the model as shown in thadgess of fit model in table 1-4. Each
of the created data were replicated 1000 timegusibyn Package in R software.

3. Data analysis
The performances of the fitted models on the bafsibe two criteria of assessment were
displayed in table 1-4 as follows:

Table 1. Performances of the Fitted Models on the Basis eaAMSquare Error
and AIC Criteria for model 1: AR(2);; = 0.3Y;;_1 — 0.6Y;;_» + e,

Sample MSE AlC

Size(n) AR SETAR | STAR| LSTAR AR SETAR STAR| LSTAR

50 1.0034| 1.0704 1.0950 1.1162 1.2435 2.2551 16.9485.3815

80 1.0007| 1.0632] 1.0748 1.0769 1.0823 1.7752 16.3405.4199

100 0.9781] 0.9482 0.9844 1.0341 0.6519 0.5120 5.3003.4578

130 0.9000 1.0160 - 0.0118 | -0.3022| 13.135p
0.9326 | 0.9128 1.9453

150 0.8841 1.0067 - -0.1791| -1.5080, 12.5708
0.9265 | 0.9036 2.0358

180 0.8378 1.0010 - -0.3771| -1.6924) 11.2028
0.9124 | 0.9223 3.0098

200 0.8316 0.8999 - -0.4642 | -2.3415 9.0534
0.9021 | 0.8507 3.5045

250 0.8127 0.8820 - -0.7922| -3.1600, 8.6308
0.8788 | 0.8568 4.0992

300 0.8108 0.8439 - -0.8058 | -3.6287| 8.5844
0.8502 | 0.8299 4.1467

400 0.8076 0.8238 - -1.0361| -4.9978 2.4269
0.7704 | 0.8081 5.1515

Plot of MSE against Steps Ahead for Different Models

T T T T T T T T
50 100 150 200 250 300 350 400

Sanple Sz=
Figure 1(a). MSEof the Fitted Models on Model 1
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Flot of AIC against Steps Ahead for Different Models

AC
5
|
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Figure 1(b). AlCof the Fitted Models on Model 1

Table 1 shows the goodness of fit test for the foodels to model 1 with the average
values of mean square error and AIC of 1000 refdinasimulated from each model at
various sample sizes. The results obtained wetteglon the graphs as shown in figure
la and 1b respectively. The best fit to model Al based on both MSE and AIC

followed by STAR model. However, with increase ample size the performance of the
four fitted models increase.

Table 2. Performances of the Fitted Models on the BasMeadn Square Error and AIC
Criteria for model 2: TR(2): ¥= 0.3sin{;;_,) - 0.6cosY;;_,)+ &

Samp MSE AIC
e AR SETA | STAR | LSTA AR SETA | STAR | LSTA
Size(n) R R R R
50 1.877 | 1.085¢ | 1.25% | 1.103Z | 39.33¢ | 25.19: | 34.95( | 27.71:
8 5 7 6 4 2
80 1.287 | 1.041¢ | 1.197 | 1.103¢ | 32.01f | 22.15¢ | 25.87¢ | 25.02:
8 9 2 9 2 2
10C | 1.2471 | 1.020: | 1.03Z | 1.103: | 24.57% | 17.89¢ | 20.00¢ | 19.61¢
0 2 8 3 4 9
13C | 1.127 | 1.001% | 1.02¢ | 1.025: | 20.77: | 13.67% | 16.36. | 14.36(
3 3 5 2 2 9
15C | 1.09¢ | 0.995¢ | 1.01¢ | 0.993¢ | 20.59¢ | 11.97% | 12.73" | 12.81¢
2 5 6 6 3 4
18C | 1.077 | 0.9837 | 1.001 | 0.983¢ | 13.84" | 11.88" | 11.97: | 11.73]
0 6 7 9 5 3




I.Akeyede, B.L.Adeleke and W.B.Yahya

20C |1.021 | 0.968: | 0.99¢ | 0.900¢ | 9.918: | 10.65: | 10.96¢ | 6.665:
1 5 4 8

25C |1.01z | 0.939¢ | 0.987 | 0.861¢ | 9.787: | 8.546% | 8.897¢ | 6.400¢
3 1

30C | 0.99¢ | 0.934. | 0.98: | 0.846¢ | 9.655( | 6.568. | 5.644¢ | 3.042¢
8 8

40C | 0.911 | 0.910¢ | 0.847 | 0.840. | 7.589¢ | 4.698t | 5.560¢ | 1.126¢

9 2

Plot of MSE against Sanple Size for Different Models

a8 10 12 14 16 18
|

50 100 150 200 250 300 3B0 400

Sanple Siz=

Figure 2(a). MSEof the Fitted Models on Model 2

Plot of AIC against Sanple Size for Different Models

AC

50 100 150 200 250 300 350 400
SanpleSiz
Figure 2(b). AIC of the Fitted Models on Model 2
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From the above results, in figure 2a and 2b, it alaserved that LSTAR is fitted best to
trigonometric function at sample sizes below 208eldlabut LSTAR is the best at sample
size above 200 based on the two criteria. Meanv@iil&aR compete well with SETAR as

sample size increases

Table 3a: Performances of the Fitted Models on the BasMedin Square Error and AIC
Criteria for model 3: EX(2): Y=0.3;;_,+ exp(-0.6;,_,) + 8

Sam MSE AlC
ple AR SETAR STAR LSTA AR SETAR STAR LSTAR
Size R
(n)

50 | 1.5195 1.2044 1.5001 1.0843 29.7012 29.8014 503.1| 17.2593

80 | 1.3350 1.0192 1.0173 1.0045 23.138 20.2449 B39.79 10.7939

100 | 1.2870 1.0074 1.0044 0.9794 18.4658 14.8p5 5I0.7| 10.6242

130 | 1.2570 0.9973 0.9968 0.9735 17.1489 11.9369047.8 | 7.7358

150 | 1.1998 0.9802 0.9794 0.9479 15.8781 8.5940 97.78| 7.7009

180 | 1.1340 0.9744 0.9741 0.90%3 15.518 8.02y2  9.372 4.9094

200 | 1.0932 0.9645 0.9732 0.8705 14.4622 6.46P7 78.68| 0.3905

250 | 1.0390 0.9593 0.9391 0.85%5 13.0971 5.8417 044.3| -6.8908

300 | 1.0206 0.9488 0.9238 0.8345 12,901  4.95p5 3248 | -7.5132

400 | 0.8925 0.9259 0.9034 0.80%4 12.5988 3.84P3 038.3| -10.6848

Plot of AIC against Steps Ahead for Different Models

AC

5 100 150 200 250 300 350 400

Sanple Size

Figure 3(a). MSEof the Fitted Models on Model 3
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Flot of MSE against Steps Ahead for Different Models
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Figure 3(b). AIC of the Fitted Models on Model 3
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In figure 3a and 3b, we observed that STAR and LBP&rform equally at sample size
below 200 but LSTAR supersede the other three msodelsample size increases and
fitted best to the exponential function at largepke sizes sample sizes.

Table 4(a). Performances of the Fitted Models on the Basis ediMSquare Error and
Residual Variance Criterion for model 4: PL(2):2Y0.3Y;2; — 0.6Y;_, + e,

Sample MSE AIC

Size(n)| AR SETAR| STAR| LSTAR AR SETAR STAR| LSTAHR
50 1.5399| 1.1077| 1.5432 1.7708 161.2003 14.3851998Q. 85.952§
80 1.5342| 1.0389| 1.3453 1.5884 159.8064 9.8809 888.8 84.5517
100 1.5231| 0.9812| 1.3399 1.5007 158.0353 9.5891 4832.] 80.3441
130 1.5134| 0.9758| 1.2253 1.4914 156.004 9.5891 132.4 76.6701
150 1.5132| 0.9757| 1.2252 1.3844  154.5%32 8.3157 4134.| 74.5517
180 1.4213| 0.9492| 1.2252 1.3833 50.8064 6.6123 132.4 72.3378
200 1.3399| 0.9279| 1.2252 1.1194 47.0134 -1.6y93 4132.| 30.6764

10
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250 1.2350, 0.8326] 1.2248 1.0646 40.8526  -5.8224 4132.| 30.6619
300 1.1392| 0.8202] 1.1266 1.0115 30.2822 -9.4863 9162.| 12.2683
400 1.1222| 0.7461| 1.1062 1.0106 24.7411 -9.8073 07P2| 10.842]

AC

Flot of MSE against Steps Ahead for Different Models
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Figure 4(a). MSEof the Fitted Models on Model 4

Plot of AIC against Steps Ahead for Different Models

T T T T T T T T
S0 100 150 200 250 300 350 400

Sanple Sz=
Figure 4(b). AIC of the Fitted Models on Model 4

From fig. 4a and 4b, it can be observed that tist lp@del is SETAR followed by STAR
at sample sizes below 300 and LSTAR as samplarsizeases.

11
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3.1. Application of thefitted modelson real life data

The four models was fitted to data on monthly minfcollected from Nigeria
Metallurgical Agency. The data was gathered fronT4l% 2013. Before fitting a
nonlinear time series model to a given set of datds good if the nonlinearity
characteristics of the data can be detected. Thesevarious tests that have been
suggested over the past years to distinguish lifresn the nonlinear data sets. For
example, SubbaRao (1980) et al and Hunnich (1982} the bispectrum test. They used
the fact that the square modulus of normalizeddaispm is constant when the time
series is linear. The hypothesis is based on theceatrality of parameters of the
marginal distribution of the square moduli, wheresnthe sample size. Yuan (2000)
modified the Hunnich’s test in such a way that plaeameter being tested under the null
hypothesis is no longer but the location paramsetich as the mean or variance. The
above mentioned methods are based on frequencyimamgaroach.

Furthermore, once a model is selected, sufficiestigng evidence need to be
found in the data to abandon the linear model. dfbee, good statistical and diagnostic
tests are needed to determine the nonlinearityrie teries data. However in this work
two tests are used to detect whether the raingdl @& nonlinear or linear. The tests are
Keenan and Tsay F-tests. Both tests are basednendibmain. They have been used in
the literature for detection of nonlinearity in Bnseries data (see for example Keenan,
1985 and Tsay, 1986). The data was transformedyueigarithmic transformation to
ensure nonlinearity and the results are shownbile ta and 6 respectively.

Table 5. Test of Nonlinearity on Monthly Rainfall in Nigerizetween 1974-2013

Nonlinearity Real Dat Transform Dat

Test Tes- DF | p- Decisior | Tes- DF | p-value | Decisior
Stat value Stat

Keenal 8.164' | 24 | 0.004f | rejec 1.4837 |24 | 0.223¢ | accep

Tsay F 1.53¢ 24 | 0.002° | rejec 1.787 24 | 0.0942: | accep

Table 5 shows that the null hypothesis of nonliitgavas rejected for the rainfall data
before being transformed but accepted after beanmgformed using the two statistics.

Table 6. Performances of the Fitted Models on Monthly Rdidfatween 1974-2013
Real Dat Transform Dat
Model MSE AIC MSE AIC

AR 6022 5546.2. | 2.777 | 1858.8¢
SETAR | 5873.2" | 4179.5. | 2.404. | 435.051!
STAR 5998.3. | 4181.6: | 2.391! | 434.776.
LSTAR | 5873.2¢ | 4181.5. | 2.383¢ | 432.9¢
Table 26 shows that SETAR is the best to fit thaefa#l data followed by LSTAR.
However, when the data is transformed to make finear, LSTAR performs better
than others based on the three criteria.

4. Conclusion

The best model to fit linear autoregressive funci®mAR at different sample sizes. The
performance of LSTAR model supersedes other modslswumber of sample size
increases except in polynomial function where SETARdel performs better than

12
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others. The three nonlinear models SETAR, LSTAR &HAR have closed
performances in exponential autoregressive funa®mmumber of sample size increases
based on MSE and AIC criteria. The performanceheffour fitted models increases as
sample size increases. Finally, it was observetdSEa AR model fits best to the Rainfall
Data and LSTAR was the best when the data is wamsfd to nonlinear.
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