
Journal of Physical Sciences, Vol. 15, 2011, 171-179 
ISSN: 0972-8791, www.vidyasagar.ac.in/journal 
Published on 22 December 2011 

171 

 
A Short Review of Analytical Studies in Hyperthermia 

 
Piyanka Dhar 1, Rikhiya Dhar 2 and Ranajit Dhar 3 

 
1Department of Mathematics, Heritage Academy, Chowbagha Road, 

Kolkata – 700 107, India. 
 

2Department of Mathematics, B.P. Poddar Institute of Management and 
Technology, 137, V.I.P Road, Kolkata – 700052. 

 
3Registrar, Vidyasagar University, Midnapur, West Bengal, India. 

 
Received November 9, 2011; accepted December 12, 2011 

 
ABSTRACT 

 
In planning hyperthermia treatments, it is desirable to predict the temperature of the 
tumour and the normal tissue so as to attain a therapeutic beneficial (desired) 
temperature of the tumour while avoiding the damage of the normal tissue. The 
desired temperature is attained by controlling both the heating power induced by 
microwave, laser and ultrasound etc [33] and surface cooling temperature. To attain 
this goal, improved version of mathematical models which include the effects of 
flow of blood through the vessels inside the tissue have been considered [2,3,4,5]. 
Recent developments of dual-phase-lag models in the biological tissue have been 
obtained on the aspects of hyperthermia treatment planning [ 8,9,10,11]. 

In Magnetic Fluid Hyperthermia (MFH), some recent analytical 
investigations on optimization problems to determine the optimum heating pattern, 
induced by multiple magnetic particle injections in tumour models, have been 
studied [ 12,13,14,15]. Some optimal control problems on temperature distribution 
of the tumour embedded inside the biological tissue in hyperthermia are investigated 
in few important articles [ 22,23,26,27,28,29,30,31,32]. 
 
1. Introduction 
           One of the important problems in clinical hyperthermia is the determination 
of the complete temperature field throughout both tumour and normal tissues. Since 
temperature are sampled at only limited number of locations during a clinical 
heating, the temperature in the majority of the tissue remain unknown and it is 
therefore difficult to asses the efficacy of the equipment and treatment protocol 
utilized [ 33 ].  Similarly, when planning hyperthermia treatments it is desirable to 
predict the temperature field in the tissue to be attained in case of a particular patient 
so that the treatment can be optimized.  
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In order to reach these goals, it is possible to use mathematical models, the 
power deposition pattern in the heated tissue and the thermal interactions in the 
tissue to calculate complete temperature fields in the heated tissue [33]. Thus, 
analytical investigations on the evaluation of abilities of different heating modalities, 
so as to optimize the proposed thermal treatment by determining the power 
deposition parameters, which maximize the therapeutic effects of the tumour 
temperature distribution while minimizing normal tissue damage, have been studied 
using standardized Pennes models [16,17,19,20,21,26,27,29,30,31].  

More detailed models with further knowledge of variations in the arterial 
temperature, probably coupled with an improved version of the bio-heat transfer 
equation, which also includes flow directionality effects of blood through large 
vessels inside the tissue, have been investigated for realistic hyperthermia treatments 
[2,3,4,5,6]. Recent developments in dual-phase- lag model have focused a new 
outlook on the aspect of hyperthermia treatments [8,9,10,11]. 

In course of future developments, it is probable that an improved version of 
the Pennes bio-heat equation together with the concept of dual-phase- lag model will 
focus the guideline on the optimal distribution of the complete temperature field 
throughout both tumour and normal tissue. 
 
2. Mathematical Modeling 

Modeling and understanding heat transport and temperature variation within 
biological tissues and body organs are key issues in medical thermal therapeutic 
applications, such as hyperthermia cancer treatment. The biological media can be 
treated as a blood saturated tissue represented by porus matrix.    

Heat transport through the biological tissues, represented by bio-heat 
models, involves thermal conduction in tissue and vascular system, blood-tissue 
convection and perfusion (through capillary tubes within tubes) and also metabolic 
heat generation. Assuming local thermal equilibrium between the blood and the 
tissue, Pennes bio-heat equation in a homogeneous tissue, can be written as 
[2,3,4,5], 
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Where ( )tzyx ,,,χ   is the tissue temperature due to heating induced by 
electromagnetic wave,  1χ  is the arterial temperature, bc  is the specific heat of 
blood, bω is the blood perfusion rate, and ( )tzyxQ ,,,  is the volumetric heat due to 
spatial heating. Here, c,ρ  and k  denote the density of the tissue, specific heat of 
the tissue and thermal conductivity of the tissue respectively. 

Modeling the hyperthermia –induced temperature distribution requires as 
accurate description of the mechanism of bio-heat transfer.  It is well known that the 
blood flow affects the thermal response of the living tissue. The heat exchange 
between the living tissue and the blood network that passes through it depends on 
the geometry of the blood vessel, the blood flow through it, and the properties of the 
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blood and the surrounding tissue [2,3]. The bio-heat transfer equations have focused 
on the distribution of the temperature in the tissue while assuming a steady state 
blood flow. The effect of blood velocity pulsations on bio-heat transfer equation is 
important to study the temperature distribution in living tissues as the actual blood 
flow velocity is periodically oscillating which has been investigated in [4,5,6] . 
Cooling effect of thermally significant blood vessels in perfused tumour tissue 
during thermal therapy was studied in [3]. Here, thermal modeling based on the 
Pennes bio-heat transfer equation describing heat transfer of perfused tumour tissue 
and the energy transport equation governing the heat convection and diffusion of the 
blood flow was investigated.  

Considering the influence of blood flow of thermally significant blood 
vessel, a single blood vessel inside and throughout the perfused tissue in three-
dimensional axis-symmetric geometric configuration of the tissue was studied in [3] 
. The energy transport equations of the tissue and blood were expressed by 
equations, given by [3],    
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where ρ,,, Qkc  designate specific heat, thermal conductivity, absorbed power 
deposition density and density with subscript b and t  for blood and tissue 
respectively. ba wTT ,, and ω signify the temperature of the tissue, arterial 
temperature, blood perfusion rate and average blood velocity along z-direction 
respectively.  

Some of the effects of pulsatile blood flow on obvious change of the energy 
transport between the vessel wall and the blood flow within blood vessel, based on 
the assumption that the vessel wall  was a perfect thermal sink , may be cited in 
[4,5,6] . A numerical study was carried out to determine the influence of pulsatile 
laminer flow and heating protocol on temperature distribution in a single blood 
vessel and tumour tissue in hyperthermia treatment by Khanfer et al.,[6].  

Biological media usually consist of blood vessels, cells and interstitial 
space, which can be, categorized as vascular and extravascular region. As such, a 
biological structure can be modeled as a porax matrix, including cells and interstitial 
space, called tissue in which the blood infiltrates through [7]. Thus, the blood and 
tissue local heat exchange , while biological media is subjected to an imposed heat 
flux as in hyperthermia, should be analytically investigated incorporating the blood 
and tissue properties , arterial blood velocity, porocity and geometrical properties of 
the biological structure, internal heat generation within the tissue and heat 
penetration depth. In this respect, the anatomic structure was modeled as a porous 
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medium consisting of the blood and tissue phases. The governing equations for the 
blood and tissues was given by [7],  
 
Blood Phase: 
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Tissue phase: 
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Where, the parameters ( )bbT , ( )ttT , ( )bu , ,bk eff , ,tk eff , ,bk ,tk ,bk dis , ρε ,  and 

pc are intrinsic phase average blood and tissue temperatures, intrinsic blood phase 
average velocity, blood and tissue effective conductivities, blood and tissue thermal 
conductivities, blood dispersion thermal conductivity, porosity, blood density and 
specific heat respectively. The blood-tissue interfacial heat transfer coefficient is 
represented by tbh  and specific surface area by tba  and genq  is the heat generation 
within biological tissue.  

Knowledge on heat transfer in living tissues has been widely studied in 
therapeutic applications, particularly in hyperthermia treatment in cancer. Due to 
simplicity and validity, the Pennes model is the most commonly used. The Pennes 
bio-heat equation describes the thermal behavior based on classical Fourier’s Law. 
As is well known, Fourier’s law depicts an infinitely fast propagation of thermal 
signal, obviously incompressible with physical reality. In this respect, a modified 
flux model for the transfer processes with a finite speed wave is important. This 
thermal wave theory introduces a relaxation time τ  that is required for heat flux 
vector to respond to the thermal disturbances (i.e. temperature gradient) as, [ 
8,9,10,11] 
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Where 
→
q  is heat flux vector and K  represents the thermal conductivity. 
Energy conservation equation of bio-heat transfer described in Pennes 

model is,  
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where QqwcTc mbb ,,,,,,ρ and bT  are density of the tissue, specific heat of the 
tissue, temperature of the tissue , specific heat of blood, perfusion rate of blood, 
metabolic heat generation, spatial heat source and arterial temperature respectively. 
               To take account the finite heat propagation effect, the thermal wave model 
of bio-heat transfer can be derived from equations (6) and (7) as [10,11],  
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which is designated as the equation derived from the dual-phase-lag heat conduction 
model. 

In Magnetic Fluid Hyperthermia (MFH) as a modality for cancer treatment, 
magnetic particles are localized in the diseased tissue. An alternating magnetic field 
is then applied to the tissue, which heats the magnetic particles by magnetic 
hysteresis losses. In this ideal hyperthermia treatment, the diseased cells should be 
selectively destroyed without damaging the surrounding healthy tissue. Among all 
hyperthermia modalities including microwave, laser and ultrasonic wave-based 
treatments, MPH has the maximum potential for such selective targeting [12,13] . In 
this respect, the analytical investigation on optimization problems to determine the 
optimum heating pattern induced by multiple magnetic particle injections in tumour 
models with irregular geometrics are very important. The injection site locations, 
thermal properties of tumour and tissue, and local blood perfusion rates can be used 
as inputs to determine the optimum parameters of heat sources for all particle 
injection sites [14,15]. 
 
3. Optimization problems 

Optimal Control theory is the mathematical study of how  to manipulate the 
parameters affecting the behavior of a system to produce the desired or optimal 
outcome [ Butkovosky, 1969; Golub, 1969 ] . This theory is now undergoing rapid 
developments and much of this theory is being assimilated in the solution of 
enormous variety of bio-medical engineering, biological and social problems [ 23,24 
] . One of the most recent developments is that of optimal control in systems with 
distributed parameters which specially includes the heating of the biological tissues 
in course of cancer treatment by hyperthermia. 

An important class of problem in biological processes with systems of 
distributed parameters are the problems of optimal heating of tissue in thermal 
therapeutic applications, such as hyperthermia treatment. Hyperthermia is 
potentially an effective method for the treatment of cancer, especially when 
combined with other treatment modalities such as radiotherapy or chemotherapy 
[25].  

However, in case of spatial heating power ),(1 txQ  induced by microwave, 
the important issue is to deal with the most typical one where the heat flux decays 
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exponentially with the distance from the surface of the tissue [ 18,22 ]. Such heating 
power induced by microwave is, in fact, constructed from well known Beer’s law. 
The spatial heating power ),(1 txQ  can then be obtained as, )(),( 21 tQetxQ xββ −=  
where )(2 tQ  is time dependent heating power applied on the surface of the tissue 
and β  signifies scattering coefficient. Thus, the heat distribution in the tissue can 
well be approximated by Beer’s law [ 18,22 ]. 

Thus, in some cases, heating power applied on the surface of the tissue 
considered according to well known Beer’s Law. In certain optimal control 
problems, both the heating power induced by microwave and surface cooling 
temperature are taken as input control variables as these are direct input accessible to 
direct control [17]. It has also been shown that surface cooling temperature can 
focus the microwave heating in deeper levels in the tissue [17,22 ]. 

In hyperthermia treatment, the tumour cells inside the tissue are heated to a 
beneficial therapeutic temperature so as to kill the tumour cells by avoiding the 
damage of the healthy tissue [ 26,27 ]. 

In the last two decades, the conjugate gradient method coupled with adjoint 
equation approach has been extensively used in the resolution of general inverse 
heat transform problems [34]. The conjugate gradient method devices the basis from 
the variational principle and transforms the original direct problem to the solution of 
two subproblems, namely, the direct problem in variation and the adjoint problem 
[26].  

In this method, a system of adjoint function and the condition of optimality 
of the control variables are obtained with the aid of calculus of variation [26]. The 
optimal values of control variables, thus, can be obtained from the optimality 
condition of the controls by means of computer simulations [17, 26, 27, 29, 30]. 

In course of analytical investigation of optimal control problems in multi-
layered biological tissue, the methodology generally adopted is the usual  
‘Maximal Principle’ with a suitably constructed Hamiltonian followed by the use of 
a variant of finite difference method [16, 18, 28, 31, 32]. 
  Some analytical investigations of optimal control problems on temperature 
distribution described by bio-heat transfer equation in multi-layered biological tissue 
have been carried out in different articles on the basis of Pennes bio-heat model [ 
16,17,18,19,20,21 ] .  
 

In order to raise the temperature of the tumour inside the tissue to it’s 
beneficial therapeutic value, heat is generated in the tissue by microwave, laser and 
ultrasound which are most commonly used heating methods. Considering Pennes 
bio-heat model, analytical investigations on this aspect of temperature distribution in 
the tissue by controlling heating power have been studied in different articles [ 
23,24,25,26,27,28,29,30,31,32,35,36 ]. 
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4. Conclusion 
On the background of dual-phase-lag heat conduction model, mentioned in 

equations 6,7 and 8, the optimal control problems can well be studied which may 
focus a modern guideline on the aspect of hyperthermia treatment. 

Further, analytical and numerical studies on the optimization problems to 
determine the optimum heating pattern, induced by magnetic particle injections in 
the tumour models with irregular structures, can also be developed which will give a 
good insight on the strategy of modern hyperthermia treatment. 
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