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                                                     ABSTRACT 
 
 Wavelet transform is increasing being used in analysis and detection of signals. In 
this article we discuss the concept of wavelets, different forms of wavelets, and their 
Fourier transforms are shown. We have also discussed the comparative advantages of 
wavelet transforms over Fourier transforms in analyzing signals.  In this study we try 
to present how discrete functions are represented in wavelet form, especially in the 
Haar wavelet representation. 

Keyword: Wavelet, Wavelet transform, Haar Function, Haar Basis Function, Fourier 
transform, Time-frequency signal. 

1. Introduction 

      Wavelet transform of a function is the improved version of Fourier transform. 
Wavelet analysis is an exciting new method for solving difficult problems in 
mathematics, physics and engineering, data compression, signal processing, image 
processing, pattern recognition, computer graphics and other medical image 
technology. The first known connection to modern wavelets dates back to Jean 
Baptiste Joseph Fourier in the nineteenth century.  The next known link to wavelets 
came from Alfred Haar in the year 1909.  After Haar’s contribution to wavelets there 
was a gap of time in research in this field until Paul Levy’s work and slight advances 
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were made in the field of wavelets from the 1930’s to the 1970’s. The next major 
advancement came from Jean Morlet around the year 1975.  Morlet had made quite 
an impact on the history of wavelets; however, he was not satisfied with his 
efforts. In 1981 Morlet in collaboration with Alex Grossman worked on an idea that 
Morlet discovered while experimenting on a basic calculator. 

The Fourier transform is a powerful tool for processing signals that are composed of 
some combination of sine and cosine signals. Mallat (1999), Wells (1993) and 
Strang (1989) have shown that wavelets also allow filters to be constructed for 
stationary and non-stationary signals. 

However, wavelets have been applied in many other areas including non-linear 
regression and compression. An offshoot of wavelet compression allows the amount 
of determinism in a time series to be estimated by Walnut (2001), Wojtaszczyk 
(1997). Charles (1991), Christensen (2004), Daubechies (1992), Addition, Paul S.  
(2002), Debnath (2002). Meyer (1993) extensively worked on wavelets. In this 
paper we have discussed about different wavelets, their properties and advantages. 
But for wavelet analysis, we can use approximating functions that are contained 
neatly in finite domains. Wavelets are well suited for approximating data with sharp 
discontinuities. We have also tried to represent discrete functions into Haar 
wavelets. 

2. Materials and Methods 

2.1 Wavelets: Wavelets are functions that are confined in finite domains and are 
used to represent data or a function.  In an analogous way to Fourier analysis which 
analyzes the frequency content in a function using sines and cosines, wavelet 
analysis analyzes the scale of a function’s content with special basis functions called 
wavelets. For details we refer to Debnath, L. (2002). Equivalent mathematical 
conditions for wavelet are: 
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where )(ωψ)  is the Fourier Transform of )(xψ , (iii) is called the admissibility 
condition. 

2.2 Discrete Wavelet Transform: The foundations of the DWT go back to 1976 
when Croiser, Esteban and Galand devised a technique to decompose discrete time 
signals. Our discrete wavelets are not time-discrete, only the translation and the 
scale step are discrete. For details we refer to Addition, P. S.  (2002). It turns out that 
it is better to discretize it in a different way, first we fix two positive constants 
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the discrete wavelet transform of a given function )(xf  is defined by 
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where both f  and ψ  are continuous, )(, xkjψ  is the complex conjugate of 

)(, xkjψ . For computational efficiency, 20 =a  and 10 =b  are commonly used so 
that results lead to a  
binary dilation of 

j2  and a dyadic translation of jk 2 .  

From (1) we get )2(2)( 2
, kxx j

j

kj −= −−
ψψ .  Now eq. (2) can be written as 
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where kandj  are integers that scale dilate the mother function )(xψ  to generate 
wavelets. The scale index j  indicates the wavelet’s width and the location index k 
gives its position. The discrete wavelet transform of a given function )(xf can be 
defined in another way which is given by  
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Here )()(),( ,,0

xandxxf kjkj ψϕ are functions of the discrete variable 

1,....,2,1,0 −= Mx  and we consider JMJj 2&1....,,.........2,1,0 =−= .  
 
2.3 Haar wavelet 
A function defined on the real line ℜ  as  
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is known as the Haar wavelet. 
The Haar wavelet )(tψ is the simplest example of a wavelet. The Haar function 

)(tψ is a wavelet because it satisfies all the conditions of wavelet. Haar wavelet 

seems non smooth at 
2
1,0=t  and discontinuous at 1=t  and it is very well 

localized in the time domain. 
The Fourier transform of )(tψ is given by 
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The graphs of Haar wavelet )(tψ and its Fourier transform )(ωψ)  are shown in 
Fig.1(a) and Fig.1(b) 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1(a). Haar wavelet.                      Fig. 1(b). Fourier transform of Haar wavelet. 
 

2.4 Mexican Hat Wavelet 
The wavelet which is defined by the second derivative of a Gaussian probability 
density function  
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is known as Mexican Hat Wavelet. 

The Fourier transform of )(tψ is 
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The graphs of Mexican Hat wavelet )(tψ and its Fourier transform )(ωψ)  are 
shown in Figs. 2(a) and 2(b). This wavelet has excellent localization in time and 
frequency domains and clearly satisfies the admissibility condition.    

 

 
 
 
 
 
 

 
 
 

      Fig. 2(a). The Mexican                                           Fig. 2(b). Fourier transform  of 
                  Hat wavelet.                                         Mexican Hat wavelet. 

 
 
Haar Wavelet Representation of functions: 
2.5 Haar Scaling Function: The Haar scaling function can be defined as 
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2.6 Haar Wavelet Function: Haar wavelet function )(xψ  in terms of scaling 

function can be written as 
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2.7 Haar Basis Function 
The Haar basis function )(zhx  is defined over the continuous and closed interval 

]1,0[∈z  for x=0, 1, 2… M-1, where JM 2= . These functions are contained in the 
MM × transformation matrix H. In order to generate H, we define integer K such 

that 12 −+= kK j  where 0,10 =−≤≤ kJj  or 1 for j=0 and jk 21 ≤≤  for 0≠j . 

Then the Haar basis functions are ]1,0[,1)()( 000 ∈== z
M

zhzh                                                             

(7) 
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The ith row of a MM ×  Haar transformation matrix contains the elements of 

M
MMMMzforzhi

1.,,........./2,/1,/0)( −
= .  

Given that 
12 −+= kK j          

                                                                                                                       (9) 
10 −≤≤ Jj          

                                                                                                                     (10) 
021010,10 ≠≤≤==−≤≤ jforkandjfororkJj j    

                                                                                                                      
 
2.7.1Example: Consider a signal {1, 4,-3, 0, 2,-1, 5, 3} which can be represent by 
the discrete 
function 3)7(,5)6(,1)5(,2)4(,0)3(,3)2(,4)1(,1)0( ==−===−=== ffffffff . 
We have 3282 === JM 3=∴ J . From (4.5.4) we get 20 ≤≤ j .when j=0, then 
k=0 or 1 [From (2.7.5)] and 01020 =−+=K or 11120 =−+=K  [From equation 
(2.7.3)] when j=1, then 21 ≤≤ k  [From eq. (2.7.5)]. Thus for j=1 and k=1 
then 2=K , & for j=1 and k=2 then 3=K . Again for j=2 then 41 ≤≤k . So for j=2 and 
k=1 then 4=K & for j=2 and k=2 then 5=K . Also for j=2 and k=3 then 6=K & 
for j=2 and k=4 then 7=K .  
 

K j k 
0 0 0 
1 0 1 
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2 1 1 
3 1 2 
4 2 1 
5 2 2 
6 2 3 
7 2 4 

Table: the values for K, j and k. 
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Now, we construct the 88× transformation matrix, ,8H is 
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We have the discrete wavelet transform of a given function )(xf  is given by  
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Here )()(),( ,,0
xandxxf kjkj ψϕ  are functions of the discrete 

variable 1,.....,2,1,0 −= Mx . We let JMandj 200 == which are performed 
over 1,.....,2,1,0 −= Mx , 1,.....,2,1,0 −= Jj .  
The given discrete functions are ,1)0( =f ,4)1( =f ,3)2( −=f ,0)3( =f  
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,00 =j the summation are performed over .2,1,0;7,6,5,4,3,2,1,0 == jx We will 

use the Haar scaling and wavelet functions and assumes that eight samples of )(xf  
are distributed over the support of the basis functions. So, from the first row of the 
matrix 4H . 
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Using (14) we get 

1)0( =f , 4)1( =f , 3)2( −=f , 0)3( =f , 2)4( =f , 1)5( −=f , 5)6( =f , 
3)7( =f                      

Using Mathematica we have drawn the graph of wavelet transform of the given 
discrete signal  
 
                  
 
 
 
 
 
 
                                 
                Fig. 3: Graph of Wavelet Transform of the given Function 
 
 
3. Result and Discussion 

From the figures of the wavelet transform we observe that wavelets are well 
localized in both time and frequency domain whereas the standard curve is only 
localized in frequency domain. In Fourier analysis signal properties do not change 
over time and it is called a stationary signal. But most interesting signals contain 
numerous non- stationary or transitory characteristics like drift, trends, abrupt 
changes and beginnings and ends of event. These characteristics are often the most 
important part of the signal. The classical Fourier analysis is not suited for detecting 
them but the wavelet analysis is suited for detecting them. 
 
4. Conclusion 
In our study we discussed about wavelets, wavelet transforms, represent of a 
function in terms of Haar wavelet. We tried to comparative discussion of 
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Fourier transform and wavelet transform graphically with mentioning the 
drawback of Fourier transform. The advantages of wavelet transform are also 
focused. We have also tried to represent here discrete functions by Haar 
discrete wavelet. From our above discussion it is clear that wavelet transform 
is much more efficient than that of Fourier transform. From our above 
discussion it is clear that the experimental results show that the represent 
discrete functions in terms of Haar wavelet because wavelets are well-
localized in both time and frequency domain, by using wavelet transform we 
can scale and translate the function and approximate the function by using 
only a few coefficients.   
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