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ABSTRACT 
 

This paper presents an application to the multi-objective stochastic transportation 
problem in fuzzy environment. In this paper, we focus on our attention to multi-
objective stochastic transportation problem involving an inequality type of 
constraints in which all parameters ( supply and demand ) are log-normal random 
variable and the objectives are non-commensurable and conflicting in nature. At first 
we convert the proposed multi-objective linear stochastic transportation problem 
into an equivalent deterministic problem under chance constrained programming 
technique framework. Then fuzzy programming technique is applied to solve this 
problem and we obtained the compromise solution. Lastly a numerical example is 
provided for the sake of illustrate the methodology.  

 
Keywords: Multi-objective Programming, Stochastic Programming, Log-normal 
Random Variable, Transportation Problem, Fuzzy Programming. 
 
1.  Introduction 

 In the typical problem, a product is transported from m  sources to n  
destinations and their supply  ) ,,,, ( 321 maaaa   and demand  ) ,,,, ( 321 nbbbb   

are respectively. The coefficients k
ijC  of the objective functions could represent the 

transportation cost, delivery time, number of goods transported, unfulfilled supply 
and demand, and others, are provided with transporting a unit of product from 
sources i  to destination j . The mathematical model of the multi-objective  
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transportation problem is presented as follows :  

 KkxCz ij
k
ij

n

j

m

i
k ,1,2,=     ,=:min

1=1=
∑∑                                       (1) 

 subject to  

 miax iij

n

j
,1,2,=,=

1=
∑                                                        (2) 

 njbx jij

m
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,1,2,=,=

1=
∑                                                        (3) 

 .    0, jandixij ∀≥                                                                        (4) 

 Here kz  represents the minimum values of k -th objective function and it is 

assumed that 0,>  0,> ji ba  and   > 0k
ijC   and  j

n

ji
m

i
ba ∑∑ ≠

1=1=
  ( for 

unbalanced transportation problem). 
 

Dantzig [3] was first to formulate the mathematical model of probabilistic 
programming in which he has suggested a two stage programming technique for 
solving a stochastic programming problem by converting the said problem into 
deterministic programming. Charnes et al. [2] first introduced the chance 
constrained programming model known as probabilistic programming with 
suggestion of three models with different types of objective functions, such as the E-
model, V-model and P-model. The E-model minimizes the expected value of 
objective functions, the V-model minimizes the generalized mean square of the 
objective functions and the P-model maximizes the probability of aspiration levels 
of the objective functions. Goicoechea et al. [5] described the deterministic 
equivalents for some probabilistic programming involving normal and other 
distributions. Sahoo et al. [9] discussed the probabilistic linear programming 
problem with random variables and they [10] are developed the computation of 
probabilistic linear programming problem involving normal and log-normal to some 
random variables with a joint constraints and obtaining its solution by fuzzy 
programming technique. Kambo [7] discussed the chance constrained and two stage 
programming methods for solving a stochastic linear programming problem. Bit et 
al. [1] in 1992 have been presented the multi-objective transportation problem using 
the fuzzy programming technique on probabilistic constraints.  

    
       The  kinds  of vagueness  can be treated  as  basic  approaches  of fuzzy 

programming called flexible programming  which  is  the  most  successful 
application  of  the  fuzzy  set   theory  initiated  by  Zadeh    [12].     The  fuzzy 
programming technique to multi-objective linear programming problems was first 
introduced by Zimmermann [13]. Diaz [4] represented an alternative procedure to 
generate all non-dominated solution to the multi-objective transportation problem. 
This approach depends upon the best compromise solution among the set of 
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coefficient solutions. Liu et al. [8] developed on chance constrained programming 
involving fuzzy parameters. In particular, Hulsurkar et al. [6] applied fuzzy 
programming to multi-objective stochastic programming problems. We assumed that 

),1,2,=(  KkC k
ij  are deterministic constants and  ),1,2,=(  miai  and 

),1,2,=(  njbj  may be random variables in multi-objective stochastic 
transportation problem. 

 
Most of the researchers have been followed by the conventional fuzzy 

approach for the solution to multi-objective stochastic transportation with two 
constraints having only one deterministic and other probabilistic. But they have not 
reviewed for studied the multi-objective stochastic transportation problem with two 
probabilistic constraints involving log-normal random variables. 

 
2. Mathematical Model 
 

 In this paper, we have consider the mathematical model for multi-objective 
stochastic transportation problem involving log-normal random variables as follows:  

 
Model - 1:  

 KkxCz ij
k
ij

n

j

m

i
k ,1,2,=     ,=:min

1=1=
∑∑                                       (5) 

 subject to  

 miax iiij

n

j

,1,2,=,1Pr
1=

α−≥







≤∑                              (6) 

 njbx jjij

m

i

,1,2,=,1Pr
1=

β−≥







≥∑                              (7) 

 .      0, jandixij ∀≥  

where ii    1,<<0 ∀α  and jj    1,<<0 ∀β .  
 
We assumed that ),1,2,=(  miai  and ),1,2,=(  njbj  are specified with log-
normal random variables. 
Now the following cases are to be considered   
1.  Only ),1,2,=(, miai  are assumed as log-normal random variables.  
 2.  Only ),1,2,=(, njbj  are assumed as log-normal random variables.  

 3.  Both ),1,2,=(, miai  and ),1,2,=(, njbj  are assumed as log-normal 
random variables.  
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2.1   Only miai ,1,2,=,  are assumed as log-normal random variables: 
        It is assumed that miai ,1,2,=  ,  are independent log-normal random 

variables with mean = )ln(= iia aEµ  and variance = 2=)ln(
iaiaVar σ , which are 

known to us. We know that  

 miaEaofmean ia

iaii ,1,2,=   ,
2

exp=)(=
2














+
σ

µ              (8) 

 
( ) miaVaraofvariance

iaiaiaii ,1,2,=   1),(exp2exp=)(= 22 −+ σσµ            (9) 

 The probability density function of i -th random variable miai ,1,2,=   ,  is  
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 −
−                   (10) 

 As ),1,2,=(, miai  is a log-normal random variable, so the equation (6) can be 
represented as follows:  

 miax iiij

n

j

,1,2,=   ,1lnlnPr
1=
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≤∑                              (11) 

 The above constraints can be expressed as:  
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 On rearranging, we get  

=1

ln (ln )
ln (ln )Pr ,   = 1,2, ,

(ln ) (ln )

n

ij i
j i i
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i i
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∑
                         (13) 

 where 
)ln(
)ln(ln

i

ii

aarV
aEa −

 is a standard normal random variable with zero mean and 

unit  variance  and  
iaσ  = ))(( ialnarV .  Here (.)Φ  represents  the  cumulative 

density function of the standard normal random variable and if 
i

Kα  denotes the 
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value of the standard normal variable then we have )(=
ii Kαα −Φ . 

Then the constraint (11) can be stated as:  

                                  miK
aarV

x

i
i

iaij

n

j ,1,2,=   ),(
)ln(

ln
1=

α

µ
−Φ≤


















−
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                  (14) 

This inequality will be satisfied only if  

        miK
aarV

x

i
i

iaij

n

j ,1,2,=   ,
)ln(

ln
1=

α

µ
−≤

−∑
                                (15) 

  

           miaarVKx iiiaij

n

j

,1,2,=   ),ln(ln
1=

αµ −≤⇒ ∑        (16) 

 Finally, the probabilistic constraint (6) can be transformed into deterministic 
constraints as follows:  

                   miKx
iaiiaij

n

j

,1,2,=   ],[exp
1=

σµ α−≤∑               (17) 

 Therefore, for the case 1 : we have obtained the multi-objective deterministic 
transportation problem denoted by Model 2 instead of multi-objective probabilistic 
transportation  problem 
 (Model 1 ) as follows: 
 
Model -2:  

 `,1,2,=     ,=:min
1=1=

KkxCz ij
k
ij
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j
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i
k ∑∑                                   (18) 

 subject to  

               miKx
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,1,2,=  ],[exp
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m
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≥∑                                              (20) 

               .        0, jandixij ∀≥  
  
2.2   Only ),1,2,=(, njbj  are assumed as log-normal random variables: 

       Assume that njbj ,1,2,= ,  is independent log-normal random 
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variable with mean = 
jbjbE µ=)ln( ,   variance = 2=)ln(

jbjbVar σ ,  which are 

known to us. We know that         

 njbEbofmean jb

jbjj ,1,2,=   ,
2

exp=)(=
2














+
σ

µ           (21) 

 ( ) njbVarbofvariance
jbjbjbjj ,1,2,=   1),(exp2exp=)(= 22 −+ σσµ         (22) 

 As  ),1,2,=(, njbj  is a log-normal random variable, so the equation (7) can be 
represented as follows:  

 njbx jjij

m
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 nj
barV

b

barV

x
j

j

jbj

j

jbij

m

i ,1,2,=   ,1
)ln(

ln

)ln(

)(ln
Pr 1= β

µµ
−≥


















−

≥
−∑

 (24) 

 But, 
)ln(

)ln(ln

j

jj
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 is a standard normal random variable with zero mean and 

unit variance. Here (.)Φ  represents the cumulative density function of the standard 
normal random variable and if 

j
Kβ  denotes the value of the standard normal 

variable then we have ( ) jj
K ββ −Φ 1=  

Therefore, the constraint (23) can be stated as:  
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 The inequality will be satisfied only if  
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                        njKx
jbjjbij
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 Finally, the probabilistic constraints (23) can be transformed into deterministic 
constraints as follows :  

                           njKx
jbjjbij

m

i
,1,2,=   ],[exp

1=
σµ β+≥∑     (28) 

 Therefore, for the case 2 : we have obtained the multi-objective deterministic 
transportation problem denoted by Model -3 instead of multi-objective probabilistic 
transportation problem ( Model 1)  
 
Model -3:  
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2.3  Both ),1,2,=(, miai  and ),1,2,=(, njbj  are assumed as log-normal 
random variables: 

 The mean and variance of ia  and jb  are known and previously defined. In 
this case, the equivalent deterministic model for the chance constrained 
programming technique of the multi-objective stochastic transportation problem can 
be represented as: 
 
Model -4:  
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                   .        0, jandixij ∀≥  

3. Solution Procedures 
 

 Let kU  and kL  are the upper and lower bounds for k -th objective function 

kz , where kU  is the highest acceptable level of achievement for the k -th objective 
and kL  is the aspired level of achievement for the k -th objective. Also, kU  - kL  = 

kd  is the degradation allowance for the k -th objective. 
The steps of fuzzy algorithm with linear membership function for solving 

the specified problem as follows: 
 

Step 1:   Solve the multi-objective stochastic transportation problem as single 
objective transportation, using one objective at a time and other is ignore. 
Step 2:    From the results of step - 1, determine the corresponding values for every 
objective at each solution derived.  
Step 3:    From the result of step-1 and 2, we construct a pay-off matrix as follows.  

  

            

11 1 12 1 1 1

21 2 22 2 2 2

31 3 32 3 3 3

1 2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

K

K

K

K K K K KK K

z X z X z X
z X z X z X
z X z X z X

z X z X z X

 
 
 
 
 
 
  

 

  
 where .,,,, 321 KXXXX  are the ideal solution with respect to first, 
second,..., K -th objective functions respectively, and ijz  = ( )i iz X , be the i -th row 
and j -th column elements of the pay-off matrix 

),1,2,3,= ; ,1,2,3,=( KjKi   
Step 4:   We define the fuzzy membership function for k -th objective function as 
follows:  

   










≤
−
−

−

≥
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UzLif
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Uzif

z

rr

rrr
rr

rr

rr

rr

,1,2,= ,1

<<  1

0

=)(µ                    (35) 

 Step 5:    We formulated an equivalent deterministic linear programming problem 
for vector minimum problem (32) using step-4 as follows.  
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                         λ:max                                                                              (36) 

 subject to  

            Kk
LU
zU

kk

kk ,1,2,=    ,
−
−

≤λ                                         (37) 

and the given constraints (33), (34) and non-negativity conditions as (4) and 
[0,1]∈λ . The above relation used to formulate the equivalent deterministic model 

of the specified problem as follows: 
Model -5:  

                    λ:max                                                                      (38) 
 subject to  

           KkULUxC kkkij
k
ij
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jbjjbij
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               .        0, jandixij ∀≥  
                0≥λ                                                                             (42) 

 where  
               Kkzkk

k
,1,2,=  )},({min= µλ  

4.  Case Study 
 The numerical example is related to a stochastic multi-objective 

transportation problem in which sources and demands are random variables and 
follows the log-normal distribution. The decision maker is interested to transport the 
goods from i - origin to j - destination, so as to satisfied to all requirements as 
follows:  

 232221141312111 39772=:min xxxxxxxz ++++++      

                    3433323124 64984 xxxxx +++++                                    (43) 
 

 232221141312112 9355344=:min xxxxxxxz ++++++  
            3433323124 52610 xxxxx +++++                                    (44) 

 subject to   

                  111

4

1=
1Pr α−≥








≤∑ ax j

j

                                             (45) 
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≥∑ bxi

i
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                      1,2,3,4.=  1,2,3=  0, jandixij ≥                        (52) 

  
 Now we assume the means and variances of log-normal random variables with the 
specified probabilistic levels of supplies i.e, ia  for 1,2,3=i  are represented in the 
following Table -1. 

  
  Mean   Variance   Specified Probability Levels  

 )( 1aE = 31   )( 1aV = 6   1α =0.01  
 )( 2aE = 37   )( 2aV = 7   2α =0.02  
 )( 3aE = 40  )( 3aV = 8   3α =0.03  

                                                       Table -1  
 

 Again, the means and variances of the log-normal random variables with the 
specified probabilistic levels of demands i.e, jb  for 1,2,3,4=j  are represented in 
the following Table -2. 

  
  Mean   Variance   Specified Probability Levels  

 )( 1bE = 10   )( 1bV = 2   1β =0.04  
 )( 2bE = 15   )( 2bV = 3   2β =0.05 
 )( 3bE = 21   )( 3bV = 4   3β =0.06  
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 )( 4bE = 26   )( 4bV = 5   4β =0.07  
                                                          Table-2  

Now using the relation of (8) and (9) the means and standard deviation of the log-
normal random variable with specified probabilistic levels instead of supply i.e, ia  
for 1,2,3=i  from the Table-1, are represented in the following Table -3. 
 

  Mean   Standard deviation  Specified Probability 
Levels  

1aµ =3.430875164 
1aσ =0.078892839 1α =0.01 

 

2aµ =3.608364907 
2aσ =0.07145636 2α =0.02 

3aµ =3.687631014 
3aσ =0.049968792 3α =0.03 

                                                            Table-3 
Again,using the relation of (21) and (22) the means and standard deviations of the 
log-normal random variables with specified probabilistic levels instead of demand 
i.e, jb  for 1,2,3,4.=j  from the Table -2, are represented in the following Table -4. 
 

 Mean   Standard deviation   Specified Probability 
Levels  

1b
µ = 2.292683779  

1b
σ = 0.0140721808   1β =0.04  

 
2bµ = 

2.701427588  

 
2bσ = 0.115087908   2β =0.05  

 
3bµ = 

3.044093436  

 
3bσ = 0.09502319  3β =0.06  

 
4bµ = 

3.253678247  

 
4bσ = 0.094003094   4β =0.07  

                                                             Table-4  
 

 As discussed in the solution procedures, we have obtained  two ideal solutions  of  
the  above multi-objective  functions stated  in  equations ( 43 ) and ( 44 ) with the 
set of the constraints from (45) to (52), a pay matrtix is formulated and from the pay-
off matrix the bounds of the above objective function are obtained i.e, the lower 
bound is ( )21   , LL  = ( 265.7626,  256.2620 )  and  for  the  same  problem  the  
upper  bound  is   ( )21   , UU  =  ( 515.195439,  525.282758 ). Using the membership 
function of the fuzzy technique, we have derived the following single objective 
deterministic transportation problem as :  
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                           λ:max                                                               (53)  

subject to  
          232221141312111 39772= xxxxxxxz ++++++  
           3433323124 64984 xxxxx +++++  
          232221141312112 9355344= xxxxxxxz ++++++  
          3433323124 52610 xxxxx +++++     

                                   515.195439249.4328391 ≤+ λz                                      (54)   
                        525.282758269.0307582 ≤+ λz                                    (55) 

  

                  425.57287831

4

1=

≤∑ j
j

x                                                (56) 

                  
4

2
=1

31.31243425j
j

x ≤∑                                                (57) 

                   136.15059583

4

1=
≤∑ j

j
x                                               (58) 

                   710.15548241

3

1=

≥∑ i
i

x                                                (59) 

                   818.12110042

3

1=
≥∑ i

i
x                                               (60) 

                   824.43778593

3

1=

≥∑ i
i

x                                               (61) 

                   929.80520034

3

1=

≥∑ i
i

x                                               (62) 

                    1,2,3,4.=  1,2,3=   0, 0, jandixij ≥≥ λ                (63) 
 The above problem is solved by LINGO package and to obtained the value of 
aspiration level and compromise solution. They are as follows: λ  = 0.7713102, 11x  
= 2.972351,  12x   = 18.12110, 13x  = 4.479427,  21x  =  7.183132,  23x  = 13.61296. 
Using the compromise solution we have obtained the optimal objective values and 
they are 1z  = 322.8053, 317.7766.=2z   
 
 
5.  Conclusion 

 The purpose of this paper is to present a solution procedure for multi-
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objective stochastic unbalanced transportation problem with log-normal random 
variables. Initially, the stochastic model of the constraints have been converted into 
an equivalent deterministic model using chance constrained programming. Then the 
fuzzy programming is applied to the objective function for solving to the 
corresponding given specified problems and to obtain a compromise solution from 
the set of non-dominated solution. 

Most of the researchers have dealt with two constraints having one 
deterministic, another probabilistic constraints. But in our approach, we have 
presented two different types of probabilistic constraints for practical importance. So 
our technique is highly fruitful in this sense of real life problems of practical 
importance. A numerical example is provided to illustrate the methodologies.  
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