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ABSTRACT

The nature of the solutions of the over-damped systems depends on the nature of
damping forces. In this article, the Krylov-Bogoliubov-Mitropolskii (KBM) method
has been extended and modified for obtaining the solutions of fourth order over-
damped nonlinear systems, when the damping force is such that, one of the
eigenvalues of the linear systems is vanishes or tends to zero and the other
eigenvalues are in integral multiple. The method is illustrated by an example. The
solutions obtained by the presented KBM method for different set of initial
conditions show good coincidence with those obtained by the numerical method.

Keywords: Asymptotic Solutions, Over-damped Systems, Damping Forces.

1. Introduction

The Krylov-Bogoliubov-Mitroploskii (KBM) [4, 6] method is a widely used
tool to study nonlinear oscillatory and non-oscillatory differential systems with
small nonlinearities. Originally, the method was developed by Krylov and
Bogoliubov [6] for obtaining the periodic solutions of second order nonlinear
differential systems with small nonlinearities. The method was then amplified and
justified mathematically by Bogoliubov and Mitroposkii [4]. Popov [13] extended
the method to damped oscillatory nonlinear systems. Owing to physical importance
of the damped oscillatory systems, Popov's results were rediscovered by Bojadziev
[5] and Mendelson [7]. Murty et al. [10] developed an asymptotic method base on
the theory of Bogoliubov to obtain the response of over-damped nonlinear systems.
Murty [11] presented a unified KBM method, which covers the undamped, damped
and over-damped cases. Sattar [14] found an asymptotic solution of a second order
critically damped nonlinear system. Shamsul [17] examined a new asymptotic
solution for both over-damped and critically damped nonlinear systems.

First, Osiniskii [12] found an asymptotic solution of a third order nonlinear
system by making use of the KBM method. But the solution was over simplified due
to the restrictions on the parameters. Mulholland [8] removed this restrictions and
found desired results. Sattar [15] studied a three-dimensional over-damped nonlinear
system. Shamsul and Sattar [16] developed a perturbation technique based on the
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work of the KBM for obtaining the solutions of third order critically damped
nonlinear systems. Shamsul [20] investigated approximate solutions of third order
critically damped nonlinear systems whose unequal eigenvalues are in integral
multiple. Shamsul [21] also presented a perturbation method for solving third order
over-damped systems based on the KBM method when two eigenvalues of the linear
equation are almost equal (rather than equal) and the other is very small.

In article [10], Murty et al. also extended the KBM method for solving fourth
order over-damped nonlinear systems. But their technique is too much complex and
laborious. Akbar ef al. [1] presented an asymptotic method for fourth order over-
damped nonlinear systems which is simple and easier than the method presented in
[10], but the results obtained by [1] are same as the results obtained by [10]. Later,
Akbar et al. [2] extended the method presented in [1] for fourth order damped
oscillatory systems. Akbar et al. [3] have investigated a technique for obtaining
over-damped solutions of n-th order nonlinear differential equation. But the solution
presented in [3] breakdown (see Appendix) when one of the eigenvalues is near
zero or vanishes.

In this article, we have filled up this gap and found desired results when one of
the eigenvalues is near zero or vanishes and the others are integral multiple.

2. The Method

Consider a fourth order weakly nonlinear differential system

x W+ kX + k¥ + kX + kyx = —& f(x, X, X, X) (1

4)

where x* stands for the fourth derivative of x with respect to ¢ and over dots are

used to denote first, second and third derivatives of x; k,, k,, k;, k, are constants,

¢ is the small parameter and f is the given nonlinear function. As the equation is
fourth order, so, there are four eigenvalues of the corresponding linear equation and
all are non-positive, since the system is over-damped. Suppose the eigenvalues are

N Iy R

Therefore, the solution of the corresponding linear equation of (1) is

-2 - - -,
x(t,0)=a,,e " +a, e +a, e +a, e )

where a 0o =1, 2, 3, 4 are constants of integration.

When ¢ =0, following [18] an asymptotic solution of (1) is sought in the form

4
x(t,e) = Zaj(l‘)e—l,t +gu1(a1,a2,a3,a4,f)+”' (3)
=1

where each a; (¢) satisfies the first order differential equation

dj(t)=5Aj(a1,a2,a3,a4,z)+... @
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We only consider the first few terms 1, 2,...,m in the series expansion of (3)

and (4), we evaluate the functions % ; and AA]. ,J =1, 2, 3, 4 such that a,(¢) appearing

m+1

in (3) and (4) satisfy the given differential equation (1) with an accuracy of €™ . In

order to determine these unknown functions, it was assumed by Murty and

Deekshatulu [9], that the functions, u,,u,,... do not contain the terms involving

e ! ,j =1,2,3, 4, since these are included in the series expansion (3) at order & .

Theoretically, the solution can be obtained up to the accuracy of any order of
approximation. However, owing to the rapidly growing algebraic complexity for the
derivation of the formulae, the solution is in general confined to the lower order,
usually the first [11]. In order to obtain some special solutions of (1), Shamsul [17,
19] imposed the restriction that, u,,u,,... exclude terms involving
e—(i1 Ay iy Ay +iz Ay +ig Ay ) t

where i, A, +i, A, +i, A, +i, A, S%(i1 +i,+i, i) A4+ A4, + 4, +4,) Q)

— (i) Ay +iy Ay +iy Ay +ig Ay )t
b

where i, =1, 2, 3,--- etc. if A, 4,, A4; <A,. Akbar et al. [3] have refined this
restriction and impose a new restriction that u,,u,,... include the terms involving
e—(i1/11+izﬂz+i3/13+i4l4)t’ when i4 >1 (6)

In article [3] Akbar et al. have shown that, under the new restrictions, the
results show good coincidence with numerical results and it is useful even if
£=1.0. In this article, we have used the restriction presented in (6) and have

investigated desired results when one of the eigenvalues tends to zero or vanishes
and the others are integral multiple.

For the restriction (5); u,, u,,... include all terms of e

Differentiating equation (3) four times with respect to #, substituting the value
""" “ in equation (1) and equating the coefficients

of &, we obtain the following equation (see also [18] for details)

4 4 d L s (d o
Z | I —dt—i-ﬂvk (e j AJ-) +H —dt+/1j u =f (al,az,a3,a4,t)
Jj=1

j=1 \ k=1, k=)

(7
4
where [ = f(x,,%,,%,,%,) and x, = Y a,(t)e”

=

At

In general, the functional f ) can be expanded in Taylor’s series (see also [9]
for details) of the form:

,...,0

0 _ iy Ay iy Ay iy A iy A
S = ZF;I,iz,i3,i4(a19a29a39a4)e SR (8)

Substituting the value of £” from (8) into equation (7), we obtain
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4 4 d i 4 d
Z I -[Ej%kj(e g Aj) +1;[(E+/1jjul
9)

_ — (i A +iy Ay +iy A3 +ig Ayt
= ZF;I,iz,i3,i4(al’a2’a3’a4) e

It is noted that the limits of i,,1,,7;,i, are 0 to oo, but for a particular

problem they have some definite values. The eigenvalues are unequal and for the
sake of definiteness, we may consider that 4, < 4, < A; < A,. Since u, does not

(i A+ iy Ayt iz Ay +igdy)t

contain the term e where i, <1 (by condition (6)), we shall be

able to find the unknown functions u, and 4,, j=1,2,3,4 subject to the
condition that the coefficients of A4,, j=1,2,3,4 do not become large or

undefined when the small root say A, is vanishes or A4, — 0" and the other

eigenvalues are in integral multiple. This completes the determination of the solution
of the equation (1).

3. Example
For illustration of the method, we have considered a Duffing equation type
fourth order nonlinear differential system

x4 k¥ ki + ke + kyx = —ex (10)

Here f = x’. Therefore, we obtain

3 - 2 2 2 3
f(o):a4 e +3a.a,’e (a+2)1 +3a,a, e (a+24)1 +3a,a,”e (+24)1 +a e

2 - 2 - 2 3
+3a a,e” ) 130  ae ) pga e ) gt

(A At Ay —(22,+25)t —(A+225)1 —(A,+225)1

+6a,a,a.e +3a’a.e +3a.a’e +3a,a’e
1%2%3 2 3 13 2%3

(22,+24) (4 +25+24) 1 (22,4 44)t

2 — t — 2 _
+3a, a,e +6a,a,a,e +3a,"a,e

—(Ay At Ag) —(Ay A5+ 2,1 —(225+44) 1

3 3t 2
+6a,a,a,e +6a,a,a,e +a, e +3a;,"ae

In accordance with our assumption (6), we obtain the following equations for
determining the functions A4,, 4,, A;, A, and u,:

y li[ i+/1k (eiﬂftAA)
=1\ k=1,k#j dt ’

3 341

2 -(24+ 4
—a’e +3a a,e” PR

24+ 4)t —(4+24,)t

2
+a,a,"e

_ 2 _
+6a,a,a,e” M) 13 g e RRr A (11)

(A+224;)

2 _
"+3a," ase

3 -3
+a, e

2 - 2 —(A,+22 2 —(24,+4
+3a,a;"e ‘$3a,a, e AR 13q g, e (P A

—(A 254248 +3a12a4e—(241+44)z +6a1a2 a4e—(/11+/12+,14)t

~(Ay+25+4y4)

+6a,aja,e

¢ 3 3,1 2 —(225+ A4t
+6a,a,a,e +a;e +3a;"a,e .
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And

4
H(i"‘ﬂj)%
j=1 dt

(12)

32,1t —(A+224)¢ —(Ap+244)1 —(H+224)1

:a43e +3a3a4ze +3a2a4ze +3ala4ze

Since A, is very small or vanishes and the other eigenvalues are in integral
multiple, together with the condition that the coefficients of A4 i J= 1,2,3,4 do
not become large or undefined, so, equation (11) can be separated for the unknown

functions Aj , J=1,2,3,4, in the following way:

d d d —At =3n4t
[E+AZJ(E+1SJ[E+A4J(6 " Al):—a13e Ml (13)
d d d
—+ A || —+ A || —+ 4 Al g
(df+-lj[df+ 3][df+ 4JG ) (14)

2 -4 +4 2 —(H+22 3 32
:—(3(11 a,e P 13 g e PR gt ”)

d d d L
—+ A4 || —+ A4 || —+ 4 YA
(dr lj[dt ZJ(dz 4j@ J

2 —(24,+4 —(4+4,+4
= —{3a, a,e (2442 ) +6a,a,ae (h+da+a)1

(15)

e—(,11+213)z —(22,+43)t

2 2
+3a,a, +3 a, aje

2 (4,424 3 -3
e(zJr 3)t+a3 e 3f}

d d d it
— A || —+ A || —+ 1 “ A
(dt+ lj(dt+ Zl(dt+ 3JG 4)

2 — — 2 _
=—Ba,a,e M 16a,a,a,e ededi)t L34 2 g, e CAH4)1 (16)

+3a,a,
And

(H+2,+24) (M +25+24) ~(225+44) t }

+6a,a,a,e "+6a,a,a,e +3aa,e
Solving equations (12)-(16), we obtain

(H+224 (A, +244) ¢t

u =d a a,’e " vd,a,a,’e -

2 - 3
+dyaya e W) g, a, e
And
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_ 3 24t
A =lae

_ 2 24t 2 ()t 3 24t
A, =p,a,a,e +p,aa,e +psa,e ,

_ 2 -2 4t “(+2,) ¢ 2 (ki)
4; =q,a,"a,e +q,a,a,a;e tqsa,a; e

(18)
2 2 Mt 2 —(+dy)t 3 2t

+q,a, ase tqsa,as e tqsa; € )

_ 2 21, t (4 +4)t 2 -2 t
A, =sa,ae +5,0a,a;sa,e +s,a, a,e

~(4+4,) ~(Aa+25)t 22t

2
+s,a,a,a,e "+s,a,a,a,e +ssa; a,e

where

d==3/24, (4 +A,) A4 =4, +24,)(4 — A4, +24,)],

dy==3/[24, (A + A)(Ay =4 +22) (A = A3 +24,) ],

dy==3/[22; (A3 + A)(A3 = A4 +24) (A — A4, +24,) ],

dy=1/[24, (4 =32,) (4, =344) (43 =3 4,) ],

[, =1/[34, = 4,) (B4, = 4,) (34, — 4,)],

P =314+ 4,) 24 + 4, = 4,) 24, + 4, — 4],

Py =3/[22,(A4 +24, =) (4 +24, - 4,)],

p;=3/[B 4, -4)(B4, -4)(B4, -4,)],

q1=3/[(4 +A3) QA4 =2, + 43) 24+ A3 = Ay)],

g, =6/[(A4 +A3) (A, + 43) (4 + A, + 4, — 4],

q3=3/[2 A3 (4 + 245 = 4,) (4, +24; — 44)],

94 =3/[(A4 +A;) 24, + A, = 4)) 24, + 4, — )],

qs=3/[22;2A;+ 4, —A4) 2 A, + 4, = 4],

qs=1/[B 4, —4)(34;, —4,) 34, —4,) ],

§;=3/[(A, + ) (A4 +24, = 4)) (A, + 24, - 4,)],

$;=6/[(A4 + A (4 — A + A4+ 4,) (4 + 4,)],

$3=3/[(4 +4) QA4 =4, + A4) 24 — A + A4)],

$4=6/[(4 +A) (4 + 4, = A3 + A) (4, + A4)],

85 =6/[(A + A)(A; + A44) (A =4y + A3 + A4) ],

$6=3/[(A4 +4)2 A4+ 4, - 4) 24 + 4, —4,)].
Substituting the values of A4, 4,,A4;and A, from equation (18) into the

equation (4), we obtain
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3 24t
e 1

b

a, =¢la,

241

_ 2 2 (Nt 3 24t
az—g(pla1 a,e +p,a,a, e +pya,e 2),

. 2 2 At —(H+4,) ¢ 2 (h+4s)t
as—g(qlal ae """ +q,a,a,a;e tqsa,a; e

(19)

22 ~(L+4s) 1

2 p 2 3 24t
tq,a, ase tqsa,a; e +qsay, e "7 )a

- 2 215t (+45) ¢ 2 oy
a4—8(s1a2 a,e +s,a,a;a,e +s,a,a,e

vs,aa,a,e " vs g aa, e "B v ala,e ),
4 1 Y2 Y4 52 %3 ¥4 6 "3 4

Now, the second, third and fourth equations in (19) have no exact solutions. So,
we have solved equation (19) by assuming that a,,a,,a; and a, are constants in
the right hand sides of (19), since ¢ is a small parameter. This assumption was first
made by Murty and Deekshatulu [9] and Murty et al. [10] to solve the similar type

of nonlinear equations. Thus, the solution of (19) is
24t )

_ 3 \UL—¢€
a,=a,,+¢lha, 2 )
) (l_e—zﬂlt)
azzaz,o"'g{plal,oaz,o 22
) (l_efulw)r) . (l—e’““)
+p,a,,a +p,a,, ——}
2819 Ay (4 + 1) 305 22, )
( _ —ZAlt) (l_e—(lﬁﬂz)f)
as; =d, +5{‘J1a12,0a3,0 +q,a, 0,045,
21 (A4, +4,)
, (l—e_M‘M} )t) . (l_e—uzz)
tq;a,,a;, (A + 1) tq,a,00;, Y
1 3 2
) (l_e—(zzms)z) . (l—e_z /13t)}
t4sa,,a;, +46 a3, >
(4, +4;) 2 2,
) (l_e—z/lzz l_e—(/11+ﬂg)t)
a,=a, +els, a; 04y +8,a, 00504,

22, A+ 4,

(l_e_zm) (l_e—ulum)
+85,a,00,,4,),

24 A+,

(l_e—umn)

2
+85a, 04, (20)

. |—e 27t )
+ 86508407}
A+ 24
when A, is small but not equal to zero.
And

+85a, ds a4
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_ 3
a=a ,+elaj,t,

(l_e—ulmm)

. 2 2
a,=a,, +8{p1a1’0 Ay L+pya,a;,

(4 +4,)
24,4
3 (l—e )
+psa;, 22, ¥s
. (1—e 1) @D
a;=4a,, +g{g1al,oa3,0 I+q,a,,a,,0a;,
(4 +4,)
. ) (l_e—(ll-%—ﬂg)t)—i_ ) (l—e_““)
q;a,,a q,a,,8; ) ———
381043 (A + ) 2,0 43,0 21,
N , (l_e—(lz+ﬂ3)t)+ . (1_6—2/13t)}
qsa; 4 U F N A —
(4, +4;) 2 A,
) (1_e—uzt) (l_e—(il-#/lg)t)
a,=a, t+e{s a,,a,, +8,a, 005,04,
’ o 24, omn A+,
, (l_e—mmz)t)
t8ya; 00,008,000y 0a,,
A+ 4,
N (l_e—(/12+/13)t)+ . (1_ —2/13z)}
S5y A3 004 Se 30040
2RO TR0 A, + A 0 22, ’

when A, is equal to zero.
Therefore, we have obtained the first approximate solution of the equation (10)
as

) Z

x=ae " +ae™ +ae ™ +ae +eu, (22)
where a,, a,, a;, a, are calculated by the equation (20) and u, is calculated by the
equation (17) when A, is small or 4, = 0" and a,, a,, a,, a, are calculated by

the equation (21) when A4, =0 and u, is calculated by the equation (17) in this case
also.

4. Results and Discussion

It is usual to compare the perturbation results obtained by a certain perturbation
method to the numerical results to test the accuracy of the approximate solution.

Firstly, we have considered the eigenvalues A, =0.01, A4, =10, A4,=3.1,
A, =9.5 and x(¢,¢) is computed by (22) in which a,,a,, a;,a, are computed
by (20) and u, is computed by (17) when &= 0.1 together with initial conditions
a,=0.5, a,,=0.5, a,, =05,
a,, =0.5[orx(0)=1.999998, x(0) = —6.785315, X(0) = 50.364510,
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X(0) = —443.935760] for various values of ¢ and the results are presented in the

second column of the Table 1. A second solution (designated by x”) of the equation
(10) has also been calculated by fourth order Runge-Kutta method and the results are
presented in the third column of the Table 1. Percentage errors have also been
calculated and are shown in the fourth column of the Table 1. From Table 1, we see
that the Percentage errors are much smaller than 1%.

Table 1: Comparison of the approximate solution x to the numerical solution
x”when the eigenvalues are 4, =0.01, A, =1.0, A; =3.1,and 1, =9.5

t X X" E%
0.0 1.999998 1.999998 0.0000
1.0 0.705366 0.704637 -0.1035
2.0 0.560031 0.558837 -0.2137
3.0 0.509801 0.508443 -0.2671
4.0 0.488283 0.486876 -0.2890
5.0 0.477125 0.475713 -0.2968
6.0 0.469820 0.468419 -0.2991
7.0 0.463977 0.462594 -0.2990
8.0 0.458710 0.457348 -0.2978
9.0 0.453698 0.452354 -0.3100
10.0 0.448808 0.447890 -0.3099

Secondly, we have considered the eigenvalues 4, =0.0, 4, =0.5, A, =1.6

and A4, =5.0. Therefore, the product of the eigenvalues is equal to zero. i. e. the

coefficient of the linear restoring force is equal to zero. In this case, only the
nonlinear restoring force exists in the system. For this situation, the perturbation

solution x(¢,¢&) is computed by (22) in which a,,a,, a;,a, are computed by (21)

and u, is computed by (17) when & =0.1 together with initial conditions
a,=025, a,,=025, a;,=025, a,,=025 J[or x(0)=0.999997,
x(0) =-1.765399, x(0)=6.937829, Xx(0) =-32.288620] for various values

of ¢ and the results are presented in the second column of the Table 2. A second

solution (designated by x”) of the equation (10) has also been calculated by fourth
order Runge-Kutta method and the results are presented in the third column of the
Table 2. Percentage errors have also been calculated and are shown in the fourth
column of the Table 2.

The KBM method was developed for the systems in which the linear restoring
forces must present and the case where only nonlinear restoring force exists and
linear restoring forces vanish was not discussed. But from Table 2, we see that the
results obtained by the solution equation (22) (an extension of the KBM method)
show good agreement with those obtained by numerical method in the case when the
linear restoring force is absent. This is the achievement of the technique presented in
this article.
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Table 2: Comparison of the approximate solution x to the numerical solution

x" when the eigenvalues are 4,=00, A,=05 A;=1.6,and 4, =5.0

t X x" E%
0.0 0.999997 0.999997 0.0000
1.0 0.458471 0.457905 -0.1236
2.0 0.356388 0.355072 -0.3706
3.0 0.310468 0.308630 -0.5955
4.0 0.285346 0.283182 -0.7642
5.0 0.270449 0.268087 -0.8811
6.0 0.261313 0.258834 -0.9978
7.0 0.255602 0.253058 -1.0053
8.0 0.251966 0.249989 -0.7908
9.0 0.249593 0.247006 -1.0473
10.0 0.247992 0.245408 -1.0529

In general, the KBM method is useful only whene& <<1. Sometimes the
solution obtained by the KBM method is fit to be used even if £ =1.0 (see also [7]
for details). We have again computed x(¢,&) by (22) when the eigenvalues are
A4,=001, A4,=10, A,=3.1, 4,=9.5 and £=1.0 together with initial
conditions  a,,=025, a,,=025, a;,=025, a,,=025 [or
x(0) =0.999998 , x(0) =-3.399525, X(0) =25.131584,
X(0) =—-221.847198 ] for various values of ¢ and the results are presented in the
second column of the Table 3. The numerical solution (designated by x”) of the
equation (10) has also been calculated by fourth order Runge-Kutta method and the
results are presented in the third column of the Table 3. Percentage errors have also

been calculated and are shown in the fourth column of the Table 3. From Table 3,
we see that, the results are acceptable and the percentage errors are smaller than 1%.

Table 3: Comparison of the approximate solution x to the numerical solution x*
when the eigenvalues are 4, =0.01, 1, =1.0, A; =3.1,and 1, =9.5

t X x" E%
0.0 0.999998 0.999998 0.0000
1.0 0.334205 0.333388 -0.2451
2.0 0.240449 0.239173 -0.5335
3.0 0.197285 0.195925 -0.6941
4.0 0.170977 0.169673 -0.7685
5.0 0.151817 0.150615 -0.7981
6.0 0.136222 0.135131 -0.8074
7.0 0.122777 0.121791 -0.8096
8.0 0.110871 0.109982 -0.8083
9.0 0.100206 0.099405 -0.8058
10.0 0.090604 0.089882 -0.8033
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5. Conclusion

A technique is developed in this article for obtaining the solution of quasi-linear
over-damped systems when the damping forces are such that one of the eigenvalues
is nearly zero and the others are integral multiple. The results obtained by the
technique presented in this article are not only fit to be used in the case of small
nonlinearities but also fit to be used in the case of high nonlinearities. i. e. the results
are useful even if ¢ =1.0.

6. Appendix: Discussion on Akbar et al. [3]

Akbar et al. [3] also considered the Duffing equation type fourth order
nonlinear differential equation, as we have considered in the equation (10). i. e. They
considered

xW kX + ki + kx4 kyx = —ex° (10)

In article [3] Akbar et al. imposed the restrictions that,
ArJ A, J=234,-, 24, +4, <A, and A, +A4,+ A, <A,. Therefore,

they respectively obtained the variational equations and the correction terms in the
form:

i, =0

s 3,(34) 1
a, =ema, e ,

. 2 o4t 2 (h=h-2%)1 3, (430) 1
a, —g{nlal ae " tnyaa, e +n,a, e

2, 2amn)i atm 21 4y g 2. w22zt (23)
na, a,e”™ +raa,a,e™ +ra, a,e™

2 (Ag=h—24s) 1 2 (Ag=ip-22) 1 2 st
+raa;e +ra,a; e +ra, ae

(Ag+45) 1 2 24t ~(+2) 1t
+raaa.e +ra, ae +rhaa,ae

~(t4) (24-3%) 1 241

t 3 2
+r10a2a3a4e +r11a3 e +r12a3 ae

And

2 - 2 _
w =d a,a e " 1 d a,a, e ) o
2 - 3
+dyaya, e B 4 d, g e

where
m, = 1/[2/11 (/13 _311)(/14 —34 )]»
n = 3/[(/11 +ﬁ'3)(/13 -4 +2/11)(/13 — Ay +24, )]:
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n, :3/[212 (/11 +2“2)(2“1 +24, _/14)]5 UE :3/[212 (/11 -3 /12)(/14 _312)]a
h :3/[211 (/11 +/12)(2ﬂ~1 +4 _ls)l = 6/[(12 +/13)(/11 +/13)(21 +/12)]9
ry=3/22, (4, + 4,) 24, + A4, - A4)] r=3/22,(4 + A4,)(4 -4, +24,))
rs=3/24, (4, + 4,)(4, - 4, +24,)}
Yo = 3/[(/12 +/ﬂt4)(ﬂ“4 +24, _/11)(/14 +24, _/13)]9
rp =6/ + ) (4 = 2y + 25+ 2,) (4, + 4,)]
ro=3/(4 +2,) Q4 = 24, + 4,) 24 - 4, + 4, )}
ro =6/[(4 +24) (A, + 2,) (4 + 2, = 25 + A4}
ro = 6/[(4, + 4,) (45 + 24) (Ao = 24 + 25 + 2, )}
"y =1/[2/13(/11 _3/13) (/12 —3/13)],
rp =3/(2 + 4,) @24 + 4, = 24) (A + 224, - 4, )}
d, = 3122, (A4 + 2,) (4 = 2, +24,) (4 = 4 +24,)],
dy ==3/[22,(2, + 2,) (2, = 2 +22,) (2, = 45 + 24, )],
dy ==3/[22,(2 + 2,) (%5 = 2 +22,) (2 - 4, + 24, ),
d, = 1/[2/14(/11 _3/14) (/12 _3/14) (13 =34, )]
Equation (23) is solved by assuming that a,, a,, a, and a, are constants in

the right side of the equation (23), since & is a small quantity. This assumption was
first made by Murty and Deekshatulu [9], Murty et al. [10] to solve similar type
nonlinear equation (23). Thus the solution of (23) is

a, =a,
_ 3 _
a,=a,,+em agyt, 34, =4,

ayy+emal, (1= )GBA -4, 34 # 4

a, =a, + 5{”1“12,0513,0 (1 —e M )/(2/11 )}
+1,a, 45 (eu‘_ll_“2 r_ 1)/(/13 — 2, =22,)
+nya;, t}, 34, =4,,

=a,,+¢& {”1“12,05’3,0 (1 —e M )/(2/11 )

+n,a,,4a; (e(ﬂfl“%)t - 1)/(/13 — A, —-22,)
tmgal, (P 214, -34,)h 34, # 4,
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. (em—zwm _1) (1_6(44—11—%2@:)
a,=a,,+e\ra a +r,a, ,a, ,a
4= %0 14,0 42,0 (A, —24, — 1) 271,072,0 3’0(21—1-224—/13—/14)
(1_e< h—%—%)t) (ew—a—ug)t _1)
+7 aioas,o —+r4a1,oa32,o PR
(/13 _222 +ﬂ’4) (}1 +2ﬂ3 _/14)
(l_e(/u—ﬁq—z,g)z) (1_672,121)

2 2
a4 ,a,, s a, ,a,,

(4 +24~4,)
o)
(4 +4)
(l—e_( Ay )t

THa,0a, 0, o Gy A

Atk
(l_e— 225 t)

(eumg )i _1)
4,34, 2,

The third term of a, will be r, aio a;ot when A4, =24, + A;. Therefore,

2%
(I—e_ 2/11t)
2,

(l—e
A+,

(25)

2
a4, a0,

—(iz+/13)t)

3 2
a4, T, a5 04,

P

they obtained the first approximate solution of the equation (10) as

_ -t -t -3t —Ayt
x=ae " +a,e ” tae” +ae ™ +éu, (26)

where a,,a,,a, and a,are given by (25) and u, is given by (24).

When A, =0, we see that, the terms m, and 7, become undefined and as a

result the solution (26) breakdown, whereas our solution (22) remain valid in this
case also.
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