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ABSTRACT 
 
In this paper, we investigate the solutions of fourth-order discrete boundary value 
problem. By using critical point theory the existence of positive solutions and 
infinitely many solutions are obtained. 
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1. Introduction 
In this paper, we study the existence of solutions for the following Fourth-order 
discrete boundary value problem (BVP). 

( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )

4

3 3

y k 2 r k y k f k, y k , k 2,T ,

y 0 y T 1 0, y 0 y T 1 0

∆ − + = ∈

∆ = ∆ + = ∆ = ∆ − =

 (1.1) 

where T is a positive integer, [ ]2,T is the discrete interval {2,…,T} and 

( ) ( ) ( ) ( )i 1 i iy k y k 1 y k , i 0,1,2,3+∆ = ∆ + − ∆ = is the forward difference operator, 

( ) ( ) [ ] ( ) [ ]0y k y k , r : 2,T 0, ,f : 2,T R R∆ = → ∞ × →  is continuous,  

                       ( )F k,x =  ( )
x

0
f k,s ds∫ . 

 In recent years, a great deal of work has been done in the study of properties 
of solutions for discrete boundary value problems, by which a number of physical, 
biological phenomena are described. For the background and results, we refer the 
reader to the monograph by Agarwal et al. and some recent contributions as [1-11, 
14-15]. 
 There are two most common techniques to study the existence of solutions: 
(i) fixed point theorem in cones has been used see [2, 3, 5, 6, 7, 10, 11, 14, 15]; 
(ii) critical point theory has been used. About the basic knowledge for critical point 
theory, please refer to [13] [14]. For recent papers, we refer to [8], [10], [15]. 
 In [10] 15], the existence of periodic solutions for second-order difference 
equations were obtained under various conditions. G. Anello [8] established a 
multiplicity theorem for Neumann boundary value problem for second order 
differential equation, 
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( ) ( ) ( )u x u f x,u h x,u in ,

u 0 in ,
v

−∆ + λ = µ + Ω

∂

= ∂Ω∂

 

where v is the outward unit normal to , R∂Ω µ∈  and ( )u div u∆ = ∇  is the Laplacian 
operator. 
 However, to the best of our knowledge, there are rare results about positive 
solutions and multiple solutions for higher-order discrete boundary value problem 
with critical point theory. In particular, problem (1.1) has not been found in the 
literature. 
 In order to apply critical point theory to problem (1.1), the following 
difficulties have to be overcome: constructing suitable space with suitable norm; 
transferring the solutions of (1.1) into the critical points of some functional, which is 
called the variational framework. Then we prove the existence of positive solutions 
and infinitely many solutions for BVP (1.1) by applying critical point theory. 
 The following two lemmas will be used in the paper. 
Lemma 1.1. [9] Let E be a Banach space and ( )1C E,Rϕ∈  satisfy Palais-Smale 
condition. Assume there exist 0 1x ,x E∈ , and a bounded open neighbourhood Ω  of 
x0 such that 1x E \∈ Ω  and 

( ) ( ){ } ( )0 1 x
max x , x inf x

∈∂Ω
ϕ ϕ < ϕ  

Let 
[ ]{h h : 0,1 EΓ = →  is continuous and ( ) ( ) }0 1h 0 x ,h 1 x= =  

and 

[ ]
( )( )

h s 0,1
c inf max h s

∈Γ ∈
= ϕ . 

Then c is a critical value of ϕ , that is, there exists *x E∈  such that ( )*x′ϕ = θ  and 

( )*x cϕ = , where ( ) ( ){ }0 1c max x , x> ϕ ϕ . 

Lemma 1.2. [14] Let E be an infinite dimensional real Banach space and let 
( )1C E,Rϕ∈  be even, satisfying Palais-Simale condition and ( )0 0ϕ = . If 

E V X= ⊕ , where V is finite dimensional, and ϕ  satisfies 
(J1) there exist constants ,a 0ρ >  such that \ B Xρϕ ∂ ∩ ≥ α  and 

(J2) for each finite dimensional subspace 1V E⊂ , the set ( ){ }1x V : x 0∈ ϕ ≥  is 
bounded. Then ϕ  has an unbounded sequence of critical values. 
 In this paper, we assume that the following conditions hold: 
(C1) ( ) ( )f k,x 0 x=  as x 0→  uniformly in [ ]k 2,T∈ , 

(C2) there exists some constants l 0, 2> µ > , such that ( ) ( )0 F k,x xf k,x< µ ≤  for 
any [ ]x l,k 2,T≥ ∈ . 
Remark 1.1. Assumptions (C1) (C2) imply 
(1) ( ) ( )F k,x o x=  as x 0→  uniformly in [ ]k 1,T∈ ; 

(2) there exist 1a 0>  and 2a 0>  such that ( ) 1 2F k, x a x aµ≥ −  for each x R∈ . 



Existence of Solutions for Fourth-Order Discrete Neumann Boundary Value 
Problem 

3 

 
2 Related Lemmas 
In this section, we are going to establish the corresponding variational framework 
for (1.1). 
 Here, and in the sequel, we define the space 

( ) ( ) ( ) ( ) ( ){ }3 3Y y : 0,T 2 R y 0 0 y T 1 , y 0 0 y T 1= + → ∆ = = ∆ + ∆ = = ∆ −  

with the norm 

( ) ( ) ( )
k 2 k 2

1
T T 2 222 2y r k y k y k 2
= =

+ 
+ ∆ − 

 
∑ ∑  

Clearly Y is a finite dimensional space. 
Lemma 2.1. ( )Y, ⋅  is a Banach space.  

Proof. Obviously, the space [ ]{ }X y : 0,T 2 R= + →  with the norm 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

T T 2 222 2 2 2 2 2

k 2 k 2
x X r k x k x 0 x 1 x T 1 x T 2 x k 2

+

= =

 
= + + + + + + + ∆ − 
 
∑ ∑

 
is a Banach space. We claim that Y is a closed subspace of X. In fact let { }ny Y,⊆  

ny y*→  as n →∞ . Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ){T 2 2 2
n n nn k 2

lim r k y k y * k y 0 y * 0 y 1 y * 1
→∞

=

− + − + − +∑  

( ) ( ) ( ) ( ) ( ) ( ) }T 2 22 2 2 2
n n n

k 2
y T 1 y * T 1 y T 2 y * T 2 y k 2 y * k 2 0,

+

=

+ − + + + − + + ∆ − − ∆ − =∑
which yields 

( ) ( )
( ) ( )

2 2
n

n

y i y * i , i 0,...,T,
y i y * i , i 0,...,T 2,

∆ → ∆ =
 → = +

 

that is 
( ) ( )
( ) ( )

2 3
n

n

y i y * i ,i 0,...,T 1,
y i y * i ,i 0,...,T 1,

∆ → ∆ = −
∆ →∆ = +

 

as n .→∞  So ( ) ( ) ( ) ( )3 3y * 0 y * T 1 0, y * 0 y * T 1 0,∆ = ∆ + = ∆ = ∆ − =  which means 
y* Y.∈  Thus Y is a closed subspace in X. Following we will show that the norm ⋅  
is equivalent to x⋅ . Since ( ) ( ) ( ) ( )3 3y Y, y 0 y T 1 0, y 0 y T 1 0∈ ∆ = ∆ + = ∆ = ∆ − = . 

Thus the norm ⋅  is equivalent to x⋅ . Therefore, ( )Y, ⋅  is a Banach space. 

Lemma 2.2. Let { }y max y,0± = ± , then the following results hold 
(i) y y y ;+ −= −  
(ii) ( ) ( ) [ ] ( ) ( )i iy k y k 0,k 0,T 2 , y k y k 0;+ − + −= ∈ + ∆ ∆ =  

(iii) ( ) ( ) [ ]y k y k ,k 0,T 2 .+ = ∈ +  

 Now we consider the modified BVP 
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( ) ( ) ( ) ( )( ) [ ]
( ) ( ) ( ) ( )

4

3 3

y k 2 r k y k f k, y k , k 2,T ,

y 0 y T 1 0, y 0 y T 1 0

+∆ − + = ∈

∆ = ∆ + = ∆ = ∆ − =

 (2.1) 

 
Lemma 2.3. Assume that [ ] [ ) [ )f : 2,T 0, 0,× +∞ → +∞  and y is a solution of (2.1). 
Then ( ) [ ] ( )y i 0,i 0,T 2 , y i 0≥ ∈ + ≡  is a solution of BVP (1.1). 
Proof. If y is a solution of (2.1), by partial sum formula we have 

 0  = ( ) ( ) ( ) ( )( ) ( )
T

4

k 2
y k 2 r k y k f k, y k y k+ −

=

 ∆ − + − ∑  

  = ( ) ( ) ( ) ( ) ( ) ( )
T 1

3 3 3

k 2
y T y T 1 y 2 y 0 y k 1 y k

−
− − −

=

∆ − − ∆ − ∆ − ∆∑  

   ( ) ( ) ( )( ) ( )
T

k 2
r k y k f k, y k y k+ −

=

+ −∑  

  = ( ) ( ) ( ) ( ) ( )( ) ( )
T 1 T

3

k 2 k 2
y k 1 y k r k y k f k, y k y k

−
− + −

= =

 − ∆ − ∆ + − ∑ ∑  

  = ( ) ( ) ( ) ( ) ( ) ( )
T 2

2 2 2 2

k 2
y T 1 y T 1 y 2 y 1 y k y k

−
− − −

=

 
− ∆ − ∆ − − ∆ ∆ − ∆ ∆ 
 

∑  

   ( ) ( ) ( )( ) ( )
T

k 2
r k y k f k, y k y k .+ −

=

+ −∑  

By Lemma 2.2, we have 

 0  = ( )( ) ( ) ( )( ) ( )( ) ( )
T 2 T2 22

k 2 k 2
y k r k y k f k, y k y k

−
− + −

= =

  − ∆ − + +   
∑ ∑  (2.2) 

   ( ) ( ) ( ) ( )}2 2y T 1 y T 1 y 2 y 1− −+∆ − ∆ − − ∆ ∆  

Since y satisfies the boundary condition of (1.1), we have 
( ) ( ) ( ) ( ) ( ) ( )2 2 2y 2 2 y 1 , y 1 y 0 , y 0 y 1 ,∆ = ∆ ∆ = ∆ ∆ = ∆  

( ) ( ) ( ) ( ) ( ) ( )2 2 2y 2 2 y 1 , y 1 y 0 , y 0 y 1 ,∆ = ∆ ∆ = ∆ ∆ = ∆  
Thus 
   ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2y 2 y 1 2 y 1 y 1 2 y 1 y 1− − −−∆ ∆ = − ∆ ∆ = − ∆ ∆  
    ( ) ( ) ( ) ( )2 2 2 2y 0 y 0 y 1 y 1− −= −∆ ∆ − ∆ ∆  (2.3) 

    ( ) ( )2 22 2y 0 y 1− −   = ∆ + ∆     

and 
 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2y T 1 y T 1 2 y T y T 2 y T y T− − −∆ − ∆ − = ∆ ∆ = − ∆ ∆  
    ( ) ( ) ( ) ( )2 2 2 2y T y T y T 1 y T 1− −= −∆ ∆ − ∆ − ∆ −  (2.4) 

    ( ) ( )2 22 2y T y T 1−   = ∆ + ∆ −     

Therefore, (2.2) means that 

 ( )( ) ( ) ( )( ) ( )( ) ( )
T T2 22

k 0 k 2
0 y k r k y k f k, y k y k .− − + −

= =

  = − ∆ + +    
∑ ∑  (2.5) 
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Thus ( )y k 0− =  for all [ ]k 0,T 2∈ + , that is, for all ( )y k 0.≥  If ( )y k 0=  for all 

[ ]k 0,T 2∈ + , y is not a solution of BVP (1.1) since ( )f k,0 0.≡  
 For each y Y∈ , put 

 ( ) ( ) ( ) ( ) ( )( )
T 2 T T2 22

k 2 k 2 k 2

1 1y : y k 2 r k y k F k, y k
2 2

+

= = =

ϕ = ∆ − + −∑ ∑ ∑  (2.6) 

and  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
T 2 T T2 22

k 2 k 2 k 2

1 1y : y k 2 r k y k F k, y k f k,0 y k
2 2

+
+ −

= = =

 ϕ = ∆ − + − − ∑ ∑ ∑  (2.7) 

Clearly, the functional ,ϕ ϕ+  are C1 with 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
T 2 T T

2 2

k 2 k 2 k 2
y ,v y k 2 v k 2 r k y k v k f k, y k v k ,

+

= = =

′ϕ = ∆ − ∆ − + −∑ ∑ ∑ (2.8) 

and 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
T 2 T T

2 2

k 2 k 2 k 2

y ,v y k 2 v k 2 r k y k v k f k, y k v k
+

+
+

= = =

′ϕ = ∆ − ∆ − + −∑ ∑ ∑  (2.9) 

for every v Y∈ . 
 
Lemma 2.4. The function y Y∈  is a critical point of the functional ϕ  if and only if 
y is a solution of BVP (1.1). 
Proof. If y Y∈  is a critical point of the functional ϕ , then by (2.8), 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
T 2 T T

2 2

k 2 k 2 k 2
0 y k 2 v k 2 r k y k v k f k,f k v k

+

= = =

= ∆ − ∆ − + −∑ ∑ ∑  (2.10) 

holds for all v Y∈ . Applying partial sum formula twice 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T 1 T

k 1 k 1
y k z k y T 1 z T 2 y 1 z 1 z k 1 y k

+

= =

∆ = + + − − + ∆∑ ∑  

we have 

 ( ) ( )
T 2

2 2

k 2
y k 2 v k 2

+

=

∆ − ∆ −∑  

 ( ) ( ) ( ) ( ) ( ) ( )
T 1

2 2 3

k 2
y T v T 1 y 0 v 0 y k 2 v k 1

+

=

= ∆ ∆ + − ∆ ∆ − ∆ − ∆ −∑  

 ( ) ( )
T 1

3

k 2
y k 2 v k 1

+

=

= − ∆ − ∆ −∑  (2.11) 

 ( ) ( ) ( ) ( ) ( ) ( )
T

3 3 4

k 2
y T 1 v T 1 y 0 v 1 y k 2 v k

=

 
= − ∆ − + − ∆ − ∆ − 

 
∑  

 ( ) ( )
T

4

k 2
y k 2 k

=

= ∆ − ∆∑ . 

Substituting (2.11) into (2.10). 

  ( ) ( ) ( ) ( )( ) ( )
T

4

k 2
y k 2 r k y k f k, y k v k 0

=

 ∆ − + − = ∑  (2.12) 

holds for all v Y∈ . Therefore, 
  ( ) ( ) ( ) ( )( ) [ ]4y k 2 r k y k f k, y k , k 2,T∆ − + = ∈ . (2.13) 
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Besides, y Y∈  means that the boundary condition in (1.1) holds. So y is a solution 
of BVP (1.1). 
 On the other hand, if y is a solution of BVP (1.1), multiplying by v Y∈  on 
the both sides of the equation in BVP (1.1), and summing on [ ]2,T , then y satisfies 

( )( )y ,v 0′ϕ = . 

Lemma 2.5. Assume that [ ] [ ] [ ]f : 2,T 0, 0,× +∞ → +∞ , the function y Y∈  is a 
critical point of the functional ϕ+  if and only if y is a positive solution of BVP 
(1.1), that is ( )y k 0≥  for [ ]k 0,T 2∈ + . 
Proof. By Lemma 2.3 and Lemma 2.4, it is easy to see that the result follows, we 
omit it here. 
 
Lemma 2.6. Suppose that (C2) holds. Then the functional ϕ+  satisfies Palais-
Smale condition, i.e., every sequence { }ny  in Y satisfies ( )nyϕ+  is bounded and 

( )ny 0′ϕ + →  has a convergent subsequence. 
Proof. Since Y is a finite dimensional Banach space, we only need to show that 
( )ny  is a bounded sequence in Y. 
 By (2.9) we have 

( )( )n ny , y−′ϕ +  = ( ) ( ) ( ) ( ) ( )
T 2 T

2 2
n n n n

k 2 k 2
y k 2 y k 2 r k y k y k

+
− −

= =

∆ − ∆ − + −∑ ∑  

     ( )( ) ( )
T

n n
k 2

f k, y k y k+ −

=
∑  

   = ( ) ( ) ( ) ( )( ) ( )
T

4
n n n n

k 2
y k 2 r k y k f k, y k y k+ −

=

 ∆ − + − ∑ . 

By Lemma 2.3 one has 
 ( )n ny , y−

+′ϕ  

 ( )( ) ( ) ( )( ) ( )( ) ( )
T T2 22

k 0 k 0
y k r k y k f k, y k y k− − + −

= =

  = − ∆ + +    
∑ ∑  (2.14) 

 
2

ny−≤ − . 

Let n
n

n

yw
y

−
−

−
= . Dividing ny−  on both sides of (2.14) and let n →∞ , one has  

( )n n ny y ,w 0− −
+′≤ − ϕ →  as n →∞ . 

So ny 0− →  in Y. 
 Now we will show that ( )ny+  is bounded in Y. By (2.7) (2.9) (C2) we have  

 ( ) ( ) ( )
T 2 T 222

n n
k 2 k 2

1 y k 2 1 r k y k
2 2

+
+ +

= =

µ µ   − ∆ − + −   
   

∑ ∑  
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 ( ) ( )( )n n ny y , y+
+′= µϕ + − ϕ +  

    ( )( ) ( ) ( ) ( )( ) ( )
T

n n n n
K 2

F k, y k f k,0 y k f k, y k y k+ − + −

=

 µ −µ − ∑   (2.15) 

 ( ) ( ) ( ) ( )
T

n n n y 1 k 2
y y , y max F k, y f k, y y+

+ ≤ =

′≤ µϕ + − ϕ + µ −∑  

 We assume ny+ →∞  as n →∞ . For convenience, we denote n
n

n

yw ,
y

+
+

+
=  

then nw 1+ = . Dividing 
2

ny+  on the both sides of (2.15), then (2.15) means that 

 ( ) ( ) ( ) ( )
T

y 1n nn k 2
2 2

nn n

max F k, y f k, y yy ,wy2
2 yy y

+
≤+ =

++ +

µ −′ϕµϕ +µ −
≤ − +

∑
. 

 Since ( )ny+ϕ  is bounded and ( )ny 0+′ϕ →  as n →∞ , let n →∞ , we get 

2 0
2

µ −
≤ , a contradiction. The result follows. 

 
3. Main Results 
Theorem 3.1. Suppose that [ ] [ ] [ ]f : 2,T 0, 0,× +∞ → +∞ , and (C1) (C2) hold. Then 
problem (1.1) has at least one nontrivial positive solution. 
Proof. We use Lemma 1.1 to prove the existence of a nontrivial critical point of +ϕ . 
We already known that ( )0 0+ϕ =  and +ϕ  satisfies Palais-Smale condition. Hence, it 
suffices to prove that +ϕ  satisfies the following conditions: 

(a) there are constants α and 0ρ >  such that Bρ+ ∂ϕ ≥ α , where  

{ }B y Y : yρ = ∈ < ρ  

(b) there is 0q Y \ Bρ∈  such that ( )0q 0+ϕ ≤ . 

 By (C1), for all 0ε > , there is a 0δ >  such that ( ) 2F k, y y≤ ε  whenever 

y ≤ δ . Let ( )( )
1
2

k
min r kρ = δ  and y ≤ ρ , we have 

[ ]
( )

k 0,T 2
max y k
ε +

≤ δ . Hence 

( )( ) ( ) 2
F k, y k y k≤ ε  for all [ ]k 2,T∈ . Summing on [2,T], we get 

 ( )( ) ( )
[ ]

( )

2T T 2

k 2 k 2
k 2,T

y
F k, y k y k

min r k
+ +

= =
ε

≤ ε ≤ ε∑ ∑ . 

 So if y = ρ , then 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
T 2 T T2 22

k 2 k 2 k 2

1 1y y k 2 r k y k F k, y k f k,0 y k
2 2

+
+ −

= = =

 ϕ + = ∆ − + − − ∑ ∑ ∑  
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[ ]

( )
[ ]

( )

2
2 2

k 2,T k 2,T

y1 1y
2 min r k 2 min r k

ε ε

 ε ≥ − ε = − ρ
 
 

. 

And it suffices to choose [ ]
( )

k 2,T
min r k

4
εε =  to get 

   ( )
2

y 0
4
ρ

ϕ+ ≥ > . 

Consider 

 ( ) ( ) ( ) ( )
2 2T 2 T2 22

k 0 k 0
y y k 2 r k y k

2 2

+

+
= =

λ λ
ϕ λ = ∆ − + −∑ ∑  

     ( )( ) ( ) ( ) ( )
T

k 2
F k, y k f k,0 f k,0 y k+ −

=

 λ − λ λ ∑  

for all 0λ > . Since condition (C2) implies Remark 1.1(2), there are 1 2a ,a 0>  such 
that  
   ( ) ( )1 2F k, y a y a

µ+ +≥ −  for all y R+ +∈ . 

Let 0 0y Y, y 1∈ = . For any 1λ ≥ , we have  

 ( ) ( ) ( ) ( )
2 2T 2 T2 22

0 0 0
k 2 k 2

y y k 2 r k y k
2 2

+

+
= =

λ λ
ϕ λ = ∆ − + −∑ ∑  

     ( )( ) ( ) ( )
T

0 0
k 2

F k, y k f k,0 y k+ −

=

 λ − λ ∑  

   ( ) ( ) ( ) ( )
2 2T 2 T T2 2

0 0 1 0 2
k 2 k 2 k 2

y k 2 r k y k a y k a T
2 2

+ µµ +

= = =

λ λ
≤ ∆ − + − λ +∑ ∑ ∑  

So ( )0y+ϕ λ → −∞  as λ→ +∞ . Since 2µ > , let 0λ  sufficiently large such that 

0y0λ > ρ , then 

  ( ) ( )0y0 0 0+ +ϕ λ ≤ = ϕ . 

Therefore, +ϕ  satisfies (a) (b). Applying Lemma 1.1 to +ϕ , there exists y* such that 

( ) ( ) ( ) ( ){ }* *
0y0y , y c max 0 , 0+ + + +′ϕ = Θ ϕ = > ϕ ϕ λ =  and y0 is not zero. Lemma 2.5 

means that BVP (1.1) has at least one positive nontrivial solution. 
 
Theorem 3.2. Suppose that ( ) ( )f k, y f k, y− = −  for any ( ) [ ]k, y 2,T R∈ ×  and (C1) 
(C2) hold. Then problem (1.1) has infinitely many solutions. 
Proof. Since ( ) ( ) [ ]f k, y f k, y 2,T R− = − ∈ × , the functional ϕ  is even satisfying 

( )0 0.ϕ =  Let Y R W= ⊕ , where ( ){ }W y Y y 1 0= ∈ = . Similar to the process of 

Lemma 2.6, ϕ  satisfies Palais-Smale condition. From the proof of Theorem 3.1, 
there exist , 0α ρ >  such that ( )yϕ ≥ α  for y Y Bρ∈ ∂∩ , and so ( )yϕ ≥ α  for 
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y Y Bρ∈ ∂∩ . Now we will verify condition (J2) in Lemma 1.2. By Remark 1.1 (2) 
we have 

 ( ) ( ) ( ) ( ) ( )( )
T 2 T T2 22

k 2 k 2 k 2

1 1y y k 2 r k y k F k, y k
2 2

+

= = =

ϕ = ∆ − + −∑ ∑ ∑  (3.1) 

   ( ) ( )
T

2
1 2

k 2

1 y a y k a T 1
2

µ

=

≤ − + × −∑ . 

Since Y is identified with finite dimensional space ( )T 1R , Y,− ⋅  is equivalent to 

( )Y, .
µ

. Hence there exist 3 4k ,k 0>  such that 

  3 4k y y k y , y Y
µ µ
≤ ≤ ∀ ∈ , where ( )

1
T

k 2
y y k

µµ

µ
=

 
=  
 
∑  

Therefore, 

  ( ) ( )2
1 2

4

1 1y y a y a T 1
2 k

µ
µ 

ϕ ≤ − + − 
 

, 

which implies that ( ){ }1y V : y 0∈ ϕ ≥  is bounded. Then Lemma 1.2 can be applied 
to the functional ϕ . The proof is completed. 
 

REFERENCES 
 

1. R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New 
York, 1992. 

2. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, 
Difference and Integral Equations, Kluwer Academic, Dordrecht, 1999. 

3. R.P. Agarwal, F.H. Wong, Existence of Positive Solutions for Higher Order 
Difference Equations. Appl. Math. Lett. Vol. 10, No. 5, pp. 67-74, 1997. 

4. R.P. Agarwal, K. Perera, D. O’Regan, Multiple positive solutions of singular 
and nonsingular discrete problems via variational methods, Nonlinear Anal. 
58(2004), 69-73. 

5. D.R. Anderson, I. Rachunkova, C.C. Tisdell, Solvabillity of discrete Neumann 
boundary value problems, J. Math, Anal. Appl. (2006), doi: 10.1016/j.jmaa. 
2006.09.002. 

6. R.I. Avery, A.C. Peterson, Three positive fixed points of nonlinear operators on 
ordered Banach space, Comput. Math. Appl., 42(2001), 313-322. 

7. A. Cabada and V. Otero-Espinar, Fixed sign solutions of second-order 
difference equations with Neumann boundary conditions, Comput. Math. Appl. 
45(2003) 1125-1136. 

8. G. Anello, A multiplicity theorem for critical points of functional on reflexive 
Banach spaces, Arch. Math. 82 (2004) 172-179. 

9.  Guo Dajun, Nonlinear Functional Analysis, Shandong science and technology 
Press, 1985. 

10. Zhiming Guo, Jianshe Yu, Existence of periodic and subharmonic solutions for 
second-order superlinear difference equations, Science in China, Vol. 46, No. 
4(2003), 506-515. 



 Yu Tian, Lihong Li and Hui Liu 10 

11. Zhiming He, On the existence of positive solutions of p-Laplacian difference 
equations, J. Comput. Appl. Math., 161 (2003), 193-201. 

12. J. Henderson, H.B. Thompson, Existence of multiple solution for second-order 
discrete boundary value problems, Comput. Math. Appl.,43(2002),1239-1248. 

13. J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, 
Springer-Verlag, Berlin, 1989. 

14. P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications 
to Differential Equations, in: CBMS Regional Conf. Ser. in Math., vol. 65, 
American Mathematical Society, Providence, RI, 1986. 

15. J.S. Yu, Z.M. Guo and X.F. Zou, Periodic solutions of second order self-adjoint 
difference equations, J. London Math. Soc. (2) 71 (2005), 146-160. 

16. A. Zafer, The Existence of Positive Solutions and Oscillation of Solutions of 
Higher-Order Difference Equations with Forcing Terms, Computers Math, 
Applic. Vol. 36, No. 10-12, pp. 27-35, 1998. 


