M.Sc. 4th Semester Examination, 2024 PHYSICS

PAPER - PHS-402.1 & 402.2

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

PAPER - PHS-402.1

(Statistical Mechanics-II)

[Marks : 20]

GROUP-A

Answer any two questions from the following: 2×2

- 1. Write down the expression for free energy of Fermi gas under quantization by magnetic field.
- 2. Distinguish between condensation of normal liquid and BE condensation.
- 3. Prove that average energy of relativistic electron is $\frac{3}{4}E_F(0)$.
- 4. For 2D Debye solid, find an expression of lattice specific heat at low temperature.

GROUP-B

Answer any two questions from the following:

 4×2

5. Show that for a 2D electron gas the number of electrons per unit area

$$n = \frac{4\pi m k_B T}{h^2} \log \left(1 + e^{\beta E_F}\right).$$

- 6. Show that susceptibility can be expressed in terms of correlation function.
- 7. Show that diffusion of a particle can be expressed in terms of auto-correlation function.
- 8. Prove that in BE condensation number of particles in excess of ground state is

$$\left(\frac{T}{T_0}\right)^{3/2} \frac{B_{3/2}(\alpha)}{B_{3/2}(0)}$$
 where $\alpha = -\mu B$.

GROUP-C

Answer any one question from the following:

 8×1

9. A lattice of (N + 1) sites has spins $S_i = \pm 1$ at each site, all of which are acted on by a magnetic field. The Hamiltonian

$$H = -h \sum_{i=0}^{N} S_{i} - J \sum_{i=1}^{N} S_{i} S_{0}$$

(i) Calculate the Partition function Q(T, N).

(ii) Average energy
$$\langle E \rangle$$

(iii) Find
$$\langle S_i \rangle$$
 and $\langle S_0 S_i \rangle$ for $h \to 0$ with $J \neq 0$ and $J \to 0$ with $h \neq 0$.

10. If

$$E = -\sum_{i=1}^{N-1} J_i S_i S_{i+1}$$

for Ising spin.

(i) Calculate
$$\langle S_k S_{k+r} \rangle$$

(ii) Also show that correlation function

$$G(r) = \prod_{k=1}^{r} \tan h \quad \beta \quad J_{K+r-1}.$$

PAPER - PHS-402.2

(Nuclear Physics-II)

[Marks : 20]

GROUP-A

Answer any two of the following: 2×2

- 1. Why the experimental study of *p-p* scattering is capable of much higher accuracy than that of *n-p* scattering?
- 2. Estimate the Fermi energy of protons in the centre of $_{92}U^{238}$ nucleus. Assume the density of nuclear matter at the centre of the $_{92}U^{238}$ nucleus to be 2×10^{38} nucleons. cm⁻³.
- 3. Find the spin-parity of ₁₉K⁴² nucleus using shell model.
- 4. Show that the lighter nuclei are more effective moderators than the heavier nuclei.

GROUP-B

Answer any **two** of the following: 4×2

5. A tritium gas target is bombarded by a beam of monoenergetic protons of kinetic energy 3 MeV. What is the kinetic energy of the neutrons emitted at 30° to the incident beam? Given, the atomic masses:

$$M\begin{pmatrix} 1\\1H \end{pmatrix} = 1.007825u, M\begin{pmatrix} 3\\1H \end{pmatrix} = 3.016049u$$

and
$$M\binom{3}{2}He = 3.016029u$$
.

- 6. Prove in case of deuteron that the probability of finding neutron and proton within the inter-nucleon force is only about 30%.
- 7. In case of neutron-nuclear interaction, most materials can be made into mirros which reflect (repel) neutrons even though fundamental neutron-nuclear interaction is always attractive. Why is this so?

8. Show how far the liquid drop model is successful in explaing why U-235 is fissile to slow neutrons but U-238 is not.

GROUP-C

Answer any **one** of the following questions: 8×1

- 9. (i) Show that the critical energy of deformation for causing fission is a linear function of \mathbb{Z}^2/A for light nuclei.
 - (ii) There is a spin-orbit term $\vec{L}.\vec{S}$ in the nucleon-nucleon interaction. Explain why there can not be a term like $\vec{r}.\vec{L}$.
 - (iii) Calculate the most probable energy of neutrons at temperature 20°C.

2

5

10. (i) Deduce the Breit-Weigner one level formula for spin-less nuclei at very low energy.

(ii) Nickel-59 has an absorption cross-section of 4.8 barns and a scattering cross-section of 17.5 barns. Compute the moderating ratio for nickel. How many collisions would be needed to thermalize a 1MeV neutron?

[Internal Assessment - 10 Marks]