M.Sc.

2011

2nd Semester Examination

PHYSICS

PAPER-PH-201

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Marks: 20)

Answer Q. No. 1 & 2 and any one from the rest.

1. Answer any two bits:

- 2×2
- (a) Show that the fractional change in the wave vector $(|\vec{k}|)$ over the distance $\lambda/2\pi$ must be small compared to unity for the validity of the WKB method.
- (b) If σ_x , σ_y and σ_z are the Pauli spin matrices, show that they satisfy anti-commutative relations.

- (c) Write down the unitary operator corresponding to an infinitesimal rotation θ about an arbitrary axis with the unit vector $\hat{\mathbf{n}}$. Show that the conservation of total angular momentum is a consequence of the rotational invariance of the system.
- (d) For an 1-D simple harmonic oscillator of mass m and angular frequency ω , use the creation (a⁺) and annihilation operator (a) to evaluate the expectation value $< n|x^2|n >$ in terms of the energy E_n , of the $|n\rangle$ state of the oscillator.
- 2. Answer any two bits:

 3×2

- (a) Write down the Ritz-variation functional. Hence show that the Schrodinger equation can be deduced from this functional.
 - (b) Prove the relation $[J_+, J_-] = 2\hbar J_z$ where $J_{\pm} = J_x \pm i J_y$
 - (c) Show that for a normalized state $|jm\rangle$ the raising (J_+) and lowering (J_-) operators satisfy the relation.

$$J_{\pm}\big|jm\rangle = \sqrt{(j\mp m)(j\pm m+1)}\,\big|j\,m\pm 1\rangle$$

(d) The Hamiltonian H and wave function ψ at t=0 for an 1-D simple harmonic oscillator of mass m and angular frequency ω are given by.

$$H = \hbar\omega \left(a^{+}a + \frac{1}{2}\right)$$

$$\psi(0) = \frac{1}{\sqrt{5}} \left| 1 \right\rangle + \frac{2}{\sqrt{5}} \left| 2 \right\rangle$$

 a^+ and a are the creation and annihilation operators and $|n\rangle$ denotes the n-th eigen state. Show that the expectation of the time dependent position $\langle x(t) \rangle$ oscillates sinusoidally with time.

- 3. (a) What do you mean by the Clebsch-Gordan coefficients? write down and prove the selection rules for the C.G. Co-efficients.
 - (b) Write down the Hamiltonian for a Hydrogen atom placed in a weak magnetic field. Apply perturbation theory of verify the normal Zeeman effect in H-atom.
- 4. (a) Use the WKB method to estimate the ground state energy of a particle of mass m moving under the potential V(x) given by

$$V(x) = + \infty, \quad x \le 0;$$

 $V(x) = \lambda x$, x > 0; λ being a positive constant.

(b) Apply the time-dependent perturbation theory to obtain Fermi golden rule.

4+6

4

Group-B

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any five from the following:

(a)
$$f(x) = x - 1$$
 for $1 < x < 2$
= 1 for $x > 2$

Express f(x) in terms of unit step function.

(b) Find the Laplace transform of

$$\frac{1}{x}\delta(x-a)$$
.

- (c) Evaluate $\frac{d^2}{dx^2}|x|$ in terms of the Dirac δ -functi
- (d) $x \frac{\partial \psi}{\partial x} + y \frac{\partial \psi}{\partial y} = 3\psi$ solve it by Lagrange's method
- (e) What is Dirichet and Neuman boundary problem?
- (f) If $G = \{1, i, -i, 1\}$ be a group then find the class G.
- (g) If $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ and
 - $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ be two permutation group, Find

(h) If $\hat{L}F(t) = f(s)$ then prove

that
$$\hat{L}\left\{\frac{F(t)}{t}\right\} = \int_{s}^{\infty} f(x) dx$$
.

where L represents Laplace transform operator.

2. (a) Using Fourier transform, evaluate the following integrals:

(i)
$$\int_{0}^{\infty} \frac{\cos k x}{a^2 + k^2} dk$$

(ii)
$$\int_{0}^{\infty} \frac{k \sin k x}{a^2 + k^2} dk$$

(b) Find the inverse Laplace transform of

$$f(s) = \frac{1}{s(s^2 + 1)^2}$$

4+6

3. (a) Construct Green's function for the following boundary value problem.

$$\frac{d^2\psi}{dx^2} - \psi = f(x); \quad \psi(0) = 0; \quad \psi(2) = 0.$$

(b) Show that the Lorentz transformation in the x-direction

$$x' = \gamma(x - vt)$$

 $t' = \gamma(t - \frac{\beta x}{c})$ form a Lie group,

where
$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$
; $\beta = \frac{v}{c}$

Considering infinitesimal transformation find the generator.

5+3+2