2009

M.Sc.

3rd SEMESTER EXAMINATION

PHYSICS

PAPER-PH-2101

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Module-PH-2101A

(Relativistic Quantum Mechanics)

(Marks : 20)

1. Answer any three bits:

2×3

- (a) Show that the Dirac Matrices can only be of even order and their eigenvalues are ±1.
- (b) Express Dirac equation in covariant form and express the properties of γ matrices.

- (c) Derive the continuity equation for a particle obeying Klein Gordon equation and find expression for current density and probability density.
- (d) Obtain expression for current density and probability density in the Dirac formalism.

(e) Show that
$$(\vec{\alpha}.\vec{A})(\vec{\alpha}.\vec{B}) = \vec{A}.\vec{B} + i \vec{\sigma}^d. (\vec{A} \times \vec{B}).$$

2. Answer any one bit :

4

- (a) Write Dirac Hamiltonian for an electron in a central potential V(r) and show that the spin-orbit interaction comes automatically in the Dirac equation.
- (b) For a Dirac particle moving in a central potential, show that the orbital angular momentum is not a constant of the motion rather the total angular momentum is a constant of the motion.

3. Answer any one bit :

10

- (a) Obtain the plane wave solution for the spin half particle which obey Dirac equation and comment on the negative energy states.
 - (b) Obtain the radial equation for the electron in a central potential in the Dirac formalism and hence obtain the energy eigenvalues for the hydrogen atom.

Module-PH-2101B

(Statistical Mechanics)

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any four bits:

 $2\frac{1}{2}\times4$

- (a) Explain quantum mechanical average and ensemble average.
- (b) Why equipartition of energy is not valid for Quantum Harmonic Oscillator.
- (c) If Canonical partition function

$$Q_N(V,T) = \frac{V^N}{N!} \left(\frac{2\pi m k_B T}{h^2}\right)^{\frac{3N}{2}}$$

find entropy.

- (d) Systems with finite number of micro-states gives rise to concept of -ve temperature Explain.
- (e) For non-interacting photons radiation pressure is $\frac{1}{3}$ × energy density. Why?
- (f) Explain pure state and mixed state in the light of density matrix.

2. (a) Define density matrix. Prove that

$$i\hbar \frac{\partial \hat{\rho}}{\partial t} = \left[\hat{H}, \hat{\rho} \right]$$

where $\hat{\rho}$ is the density matrix operator.

1+4

(b) If
$$\hat{\rho} = \frac{1}{4} \begin{pmatrix} 3 & \sqrt{2} - i \\ \sqrt{2} + i & 1 \end{pmatrix}$$

does it represent pure state of mixed state? What is the state of polarization?

3+2

- 3. (a) Prove that in grand canonical ensemble relative fluctuation of number of particles $\approx \frac{1}{\sqrt{N}}$.
 - (b) Deduce BE distribution function from grand canonical ensemble.
 - (c) Prove that grand potential $\Omega = -k_BT l_n\xi$ where ξ is the grand partition function.