
Chapter 3

Doubt intuitionistic fuzzy H-ideals

in BCK/BCI-algebras∗

3.1 Introduction

Several concepts in FS theory are accepted in IFS theory such as IF relations,

intuitionistic L-FSs, IF implications, DIFSs etc.

Khalid and Ahmad [50] in 1999 brought the idea of FH-ideals in BCI-algebras. In

BCK-algebras, characterization of DFH-ideals and concept of IFH-ideals are investi-

gated in 2003 by Zhan and Tan [92] and in 2010 by Satyanarayan et al. [66, 67].

Jun [47], in 2001 made the DP and T-product of T-fuzzy SAs. Abdulla et al. [5,6],

gave some interesting results on DP of fuzzy ideals in different algebraic structures.

Furthermore in BCK-algebras, the notion of DP of IFH-ideals are proposed by Ab-

dullah et al [7] in 2012,.

In this current chapter, we have introduced DIFH-ideals in BCK/BCI-algebras

and have made a detailed study of its properties. The outcomes made us conclude

that in BCK/BCI-algebras, an IFS is a DIFH-ideal if the complement of this IFS

is an IFH-ideal. Besides we have also investigated relations among DIF-ideals and

DIFH-ideals.

Another unique inclusion that we have made in this chapter the DP of two DIFSAs

and two DIFH-ideals of two BCK/BCI-algebras. We have also studied few important

∗Part of the works presented in this chapter are published in

(1) Annals of Fuzzy Mathematics and Informatics, 8(4) 593-605 (2014), (2)International Journal of

Pure and Applied Researches, 2(1) (2016), 11-21.
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properties and relationships among them. It is noted that the DP of two IFSs appears

as DIFH-ideals and DIFSAs if and only if for any a, b ∈ [0, 1], UC of level a and LC

of level b of that IFSs are H-ideals or SAs in BCK/BCI-algebra U × V .

3.2 DIFH-ideals in BCK/BCI-algebras

In the current section, in BCK/BCI-algebras the notion of DIFH-ideals is initiated

and different features connected to these are investigated.

Definition 3.2.1. Let M = (αM , ζM) be an IFS of a BCK/BCI-algebra U , then M

is termed as a DIFH-ideal in U if

(i) αM(0) ≤ αM(q
′
), ζM(0) ≥ ζM(q

′
)

(ii) αM(q
′ ∗ s′) ≤ αM(q

′ ∗ (r
′ ∗ s′))

∨
αM(r

′
)

(iii) ζM(q
′ ∗ s′) ≥ ζM(q

′ ∗ (r
′ ∗ s′))

∧
ζM(r

′
), for all q

′
, r
′
, s
′ ∈ U.

Theorem 3.2.1. In an associative BCK/BCI-algebra U if the inequility q
′ ∗ w ≤ x

meets for a DIFH-ideal, then

(i) αM(q
′ ∗ w) ≤ αM(x)

(ii) ζM(q
′ ∗ w) ≥ ζM(x).

Proof. Let q
′
, w, x ∈ U with q

′ ∗w ≤ x then (q
′ ∗w) ∗ x = 0 and as M is a DIFH-ideal

in U , so

αM(q
′ ∗ w) ≤ max{αM(q

′ ∗ (x ∗ w)), αM(x)}

= max{αM((q
′ ∗ x) ∗ w), αM(x)} [Since U is associative]

= max{αM((q
′ ∗ w) ∗ x), αM(x)}

= max{αM(0), αM(x)}

= αM(x) [because αM(0) ≤ αM(x) ]

Therefore, αM(q
′ ∗ w) ≤ αM(x).
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Again,

ζM(q
′ ∗ w) ≥ min{ζM(q

′ ∗ (x ∗ w)), ζM(x)},

= min{ζM((q
′ ∗ x) ∗ w), ζM(x)} [Since U is associative]

= min{ζM((q
′ ∗ w) ∗ x), ζM(x)}

= min{ζM(0), ζM(x)}

= ζM(x) [because ζM(0) ≥ ζM(x) ]

Therefore, ζM(q
′ ∗ w) ≥ ζM(x). Thus the theorem proves.

Proposition 3.2.2. For a DIFH-ideal M = (αM , ζM) in a BCK-algebra U . We have

αM(0 ∗ (0 ∗ q′)) ≤ αM(q
′
) and ζM(0 ∗ (0 ∗ q′)) ≥ ζM(q

′
), for all q

′ ∈ U .

Proof. It can be easily proved.

Lemma 3.2.1. If an IFS M = (αM , ζM) be a DIFH-ideal in a BCK/BCI-algebra U .

Then for q
′ ≤ a, we have, αM(q

′
) ≤ αM(a) and ζM(q

′
) ≥ ζM(a), for all q

′
, a ∈ U .

Proof. Let q
′
, a ∈ U such that q

′ ≤ a then q
′ ∗ a = 0. Now, αM(q

′
) = αM(q

′ ∗ 0) ≤

max{αM(q
′ ∗ (a ∗ 0)), αM(a)} = max{αM(q

′ ∗ a), αM(a)} = max{αM(0), αM(a)} =

αM(a). Therefore, αM(q
′
) ≤ αM(a).

Again, ζM(q
′
) = ζM(q

′∗0) ≥ min{ζM(q
′∗(a∗0)), ζM(a)} = min{ζM(q

′∗a), ζM(a)} =

min{ζM(0), ζM(a)} = ζM(a). Therefore, ζM(q
′
) ≥ ζM(a).

Example 9. Let U = {0, k, l,m, n} be a BCK-algebra as given in table below:

∗ 0 k l m n

0 0 0 0 0 0

k k 0 k 0 0

l l l 0 0 0

m m m m 0 0

n n m n k 0

Let M = (αM , ζM) be an IFS in U as defined by

U 0 k l m n

αM 0.1 0.4 0.7 0.8 0.8

ζM 0.9 0.6 0.2 0.2 0.2

Then M = (αM , ζM) is a DIFH-ideal in U .
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Theorem 3.2.3. In a BCK-algebra U , the necesssity operator over a DIFH-ideal M

that is,
⊕

M = {〈q′ , αM(q
′
), ᾱM(q

′
)〉/q′ ∈ U} is also a DIFH-ideal.

Proof. Since M = (αM , ζM) is a DIFH-ideal in U , then αM(0) ≤ αM(q
′
) and αM(q

′ ∗

s
′
) ≤ αM(q

′ ∗ (r
′ ∗ s′))

∨
αM(r

′
).

Now, αM(0) ≤ αM(q
′
), or 1 − ᾱM(0) ≤ 1 − ᾱM(q

′
), or ᾱM(0) ≥ ᾱM(q

′
), for any

q
′ ∈ U . Now for any q

′
, r
′
, s
′ ∈ U , αM(q

′ ∗ s′) ≤ max{αM(q
′ ∗ (r

′ ∗ s′)), αM(r
′
)}. This

gives, 1−ᾱM(q
′∗s′) ≤ max{1−ᾱM(q

′∗(r′∗s′)), 1−ᾱM(r
′
)} or, ᾱM(q

′∗s′) ≥ 1−max{1−

ᾱM(q
′ ∗ (r

′ ∗ s′)), 1 − ᾱM(r
′
)}. Finally, ᾱM(q

′ ∗ s′) ≥ min{ᾱM(q
′ ∗ (r

′ ∗ s′)), ᾱM(r
′
)}.

Hence,
⊕

M = {(q′ , αM(q
′
), ᾱM(q

′
))/q

′ ∈ U} is a DIFH-ideal in U .

Theorem 3.2.4. For a DIFH-ideal M = (αM , ζM) in U . The possibility operator over

M , which is
⊗

M = {〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ U} is also a DIFH-ideal in U .

Proof. Since M = (αM , ζM) is a DIFH-ideal in U , then ζM(0) ≥ ζM(q
′
).

Also, ζM(q
′ ∗ z) ≥ ζM(q

′ ∗ (r
′ ∗ z)

∧
ζM(r

′
).

Again, we have, ζM(0) ≥ ζM(q
′
), or 1− ζ̄M(0) ≥ 1− ζ̄M(q

′
), or ζ̄M(0) ≤ ζ̄M(q

′
), for

any q
′ ∈ U . Also for any q

′
, r
′
, z ∈ U , ζM(q

′ ∗ z) ≥ min{ζM(q
′ ∗ (r

′ ∗ z), ζM(r
′
)} This

implies, 1 − ζ̄M(q
′ ∗ z) ≥ min{1 − ζ̄M(q

′ ∗ (r
′ ∗ z), 1 − ζ̄M(r

′
)}. That is, ζ̄M(q

′ ∗ z) ≤

1−min{1− ζ̄M(q
′ ∗ (r

′ ∗ z), 1− ζ̄M(r
′
)} or, ζ̄M(q

′ ∗ z) ≤ max{ζ̄M(q
′ ∗ (r

′ ∗ z), ζ̄M(r
′
)}.

Hence,
⊗

M = {〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ U} is a DIFH-ideal in U .

Theorem 3.2.5. Let M = (αM , ζM) be an IFS in U . Then M = (αM , ζM) is a

DIFH-ideal in U iff
⊕

M , and
⊗

M are DIFH-ideals in U .

Proof. The proof is same as Theorem 3.2.3 and Theorem 3.2.4.

Let us illustrate the Theorem 3.2.3, Theorem 3.2.4 and Theorem 3.2.5 by the help

of the example as defined by.

Example 10. Let U = {0, t, u, v, w} be a BCK-algebra as follows:

∗ 0 t u v w

0 0 0 0 0 0

t t 0 t t t

u u u 0 u u

v v v v 0 v

w w w w w 0
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Let M = (αM , ζM) be a DIFH-ideal in U as defined by

U 0 t u v w

αM 0.2 0.4 0.5 0.5 0.6

ζM 0.8 0.6 0.4 0.5 0.4

Then
⊕

M , is defined as follows:

U 0 t u v w

αM 0.2 0.4 0.5 0.5 0.6

ᾱM 0.8 0.6 0.5 0.5 0.4

Also
⊗

M is defined by

U 0 t u v w

ζ̄M 0.2 0.4 0.6 0.5 0.6

ζM 0.8 0.6 0.4 0.5 0.4

So, it can be verified that
⊕

M = {〈q′ , αM(q
′
), ᾱM(q

′
)〉/q′ ∈ U} and

⊗
M = {〈q′ , ζ̄M(q

′
),

ζM(q
′
)〉/q′ ∈ U} are DIFH-ideals in U .

Theorem 3.2.6. An IFS M = (αM , ζM) is a DIFH-ideal in U iff the FSs αM and ζ̄M

are DFH-ideals in U .

Proof. Let M = (αM , ζM) be a DIFH-ideal in U . Then it is obvious that αM is a

DFH-ideal in U , and from Theorem 3.8, we conclude that ζ̄M is a DFH-ideal in U .

Conversely, let αM be a DFH-ideal in U . Therefore αM(0) ≤ αM(q
′
), αM(q

′
) ≤

max{αM(q
′ ∗ (r

′ ∗ s′)), αM(r
′
)},∀q′ , r′ , s′ ∈ U . Again, since ζ̄M is a DFH-ideal in U ,

so, ζ̄M(0) ≤ ζ̄M(q
′
), gives 1− ζM(0) ≤ 1− ζM(q

′
), implies ζM(0) ≥ ζM(q

′
).

Also, ζ̄M(q
′∗s′) ≤ max{ζ̄M(q

′∗(r′∗s′)), ζ̄M(r
′
)} or, 1−ζM(q

′ ∗ s′) ≤ max{1−ζM(q
′∗

(r
′∗s′)), 1− ζM(r

′
)} or, ζM(q

′ ∗ s′) ≥ 1−max{1−ζM(q
′∗(r′∗s′)), 1− ζM(r

′
)}. Finally,

ζM(q
′ ∗ s′) ≥ min{ζM(q

′ ∗ (r
′ ∗ s′)), ζM(r

′
)}, for all q

′
, r
′ ∈ U. Hence, M = (αM , ζM) is

a DIFH-ideal in U .

Corollary 3.2.1. Let M = (αM , ζM) be a DIFH-ideal in U . Then the sets, DαM
=

{q′ ∈ U/αM(q
′
) = αM(0)}, and DζM = {q′ ∈ U/ζM(q

′
) = ζM(0)} are H-ideals in U .
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Proof. Let M = (αM , ζM) be a DIFH-ideal in U . Obviously, 0 ∈ DαM
and DζM . Now,

let q
′
, r
′
, s
′ ∈ U, such that q

′ ∗ (r
′ ∗ s′), r′ ∈ DαM

. Then αM(q
′ ∗ (r

′ ∗ s′)) = αM(0) =

αM(r
′
). Now, αM(q

′ ∗ s′) ≤ max{αM(q
′ ∗ (r

′ ∗ s′)), αM(r
′
)} = αM(0).

Again, since αM is a DFH-ideal in U , αM(0) ≤ αM(q
′ ∗ s′). Therefore, αM(0) =

αM(q
′ ∗ s′). It follows that, q

′ ∗ s′ ∈ DαM
, for all q

′
, r
′
, s
′ ∈ U. Therefore, DαM

is a

H-ideal in U . In the similar fashion we can conclude that DζM is also a H-ideal in

U .

Definition 3.2.2. Let M = (αM , ζM) be an IFS in U , and c, d ∈ [0, 1], then UC of

level c and LC of level d of M , is as follows:

α≤M,c = {q′ ∈ U/αM(q
′
) ≤ c}

and ζ≥M,d = {q′ ∈ U/ζM(q
′
) ≥ d}.

Theorem 3.2.7. If M = (αM , ζM) be a DIFH-ideal in U , then α≤M,c and ζ≥M,d are

H-ideals in U for any c, d ∈ [0, 1].

Proof. Let M = (αM , ζM) be a DIFH-ideal in U , and let c ∈ [0, 1] with αM(0) ≤ c.

Then we have, αM(0) ≤ αM(q
′
), for all q

′ ∈ U , but αM(q
′
) ≤ c, for all q

′ ∈ α≤M,c. So,

0 ∈ α≤M,c. Let q
′
, r
′
, s
′ ∈ U with q

′∗(r′∗s′) ∈ α≤M,c and r
′ ∈ α≤M,c , then, αM(q

′∗(r′∗s′)) ∈

α≤M,c and αM(r
′
) ∈ α≤M,c . Therefore, αM(q

′ ∗ (r
′ ∗ s′)) ≤ c and αM(r

′
) ≤ c . Since αM

is a DFH-ideal in U , it follows that, αM(q
′ ∗ s′) ≤ αM((q

′ ∗ (r
′ ∗ s′))

∨
αM(r

′
) ≤ c and

hence q
′ ∗ s′ ∈ α≤M,c, for all q

′
, r
′
, s
′ ∈ U. Therefore, α≤M,c is a H-ideal in U for c ∈ [0, 1].

In the similar fashion it can also be proved that ζ≥M,d is a H-ideal in U for d ∈ [0, 1].

Theorem 3.2.8. If α≤M,c and ζ≥M,d are either empty or H-ideals in U for c, d ∈ [0, 1],

then M = [αM , ζM ] is a DIFH-ideal in U .

Proof. Let α≤M,c and ζ≥M,d be either empty or H-ideals in U for c, d ∈ [0, 1]. For any

q
′ ∈ U, let αM(q

′
) = c and ζM(q

′
) = d. Then q

′ ∈ α≤M,c

∧
ζ≥M,d, so α≤M,c 6= φ 6= ζ≥M,d.

Since α≤M,c and ζ≥M,d are H-ideals of U , therefore 0 ∈ α≤M,c

∧
ζ≥M,d. Hence, αM(0) ≤

c = αM(q
′
) and ζM(0) ≥ d = ζM(q

′
), where q

′ ∈ U . If there exist a
′
, b
′
, c
′ ∈ U

to the extent that αM(a
′ ∗ c′) > max{αM(a

′ ∗ (b
′ ∗ c′)), αM(b

′
)}, now considering,

c0 = 1
2
(αM(a

′ ∗ c′) + max{αM(a
′ ∗ (b

′ ∗ c′)), αM(b
′
)}), We have, αM(a

′ ∗ c′) > c0 >

max{αM(a
′ ∗ (b

′ ∗ c′)), αM(b
′
)}. Hence, a

′ ∗ c′ /∈ α≤M,c0
, (a

′ ∗ (b
′ ∗ c′)) ∈ α≤M,c0

and
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b
′ ∈ α≤M,c0

, that is α≤M,c0
is not an H-ideal in U , here a contradiction arises. Therefore,

αM(q
′ ∗ s′) ≤ αM((q

′ ∗ (r
′ ∗ s′))

∨
αM(r

′
), for any q

′
, r
′
, s
′ ∈ U .

Eventually, suppose that there exist e
′
, f
′
, g
′ ∈ U s.t ζM(e

′ ∗ g′) < min{ζM(e
′ ∗

(f
′ ∗ g′)), ζM(f

′
)}. Taking d0 = 1

2
(ζM(e

′ ∗ g′) + min{ζM(e
′ ∗ (f

′ ∗ g′)), ζM(f
′
)}), then

min{ζM(e
′ ∗ (f

′ ∗ g′)), ζM(f
′
)} > d0 > ζM(e

′ ∗ g′). Therefore, e
′ ∗ (f

′ ∗ g′) ∈ ζ≥M,d and

f
′ ∈ ζ≥M,d but e

′ ∗ g′ /∈ ζ≥M,d. Again a contradiction springs. Thus the proof ends.

But, if an IFS M = (αM , ζM), is not a DIFH-ideal in U , then α≤M,c and ζ≥M,d are not

H-ideals in U for c, d ∈ [0, 1], which is described through the example as given below.

Example 11. Let consider a BCK-algebra V that was given in Example 6 in the

below tabulated form:

∗ 0 d1 e1 f1

0 0 0 0 0

d1 d1 0 d1 d1

e1 e1 d1 0 0

f1 f1 d1 f1 0

Let M = (αM , ζM) be an IFS in V defined by

V 0 d1 e1 f1

αM 0.1 0.5 0.7 0.6

ζM 0.8 0.4 0.2 0.4

which is not a DIFH-ideal in U .

For c = 0.671 and d = 0.252, we get α≤M,c = ζ≥M,d = {0, d1, f1}, which are not

H-ideals in U , as e1 ∗ (d1 ∗ 0) = e1 ∗ d1 = d1 ∈ {0, d1, f1}, and d1 ∈ {0, d1, f1}, but

e1 ∗ 0 /∈ {0, d1, f1}.

Theorem 3.2.9. Union of any two DIFH-ideals in U , is also a DIFH-ideal in U .

Proof. Let M = (αM , ζM) and N = (αN , ζN) be two DIFH-ideals in U . Again let, C =

M ∪N = (αC , ζC), where αC = αM ∨αN and ζC = ζM ∧ ζN . Let q
′ ∈ U , then, αC(0) =

(αM ∨ αN)(0) = max{αM(0), αN(0)} ≤ max{αM(q
′
), αN(q

′
)} = (αM ∨ αN)(q

′
) =

αC(q
′
) and ζC(0) = (ζM ∧ ζN)(0) = min{ζM(0), ζN(0)} ≥ min{ζM(q

′
), ζN(q

′
)} =
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(ζM ∧ ζN)(q
′
) = ζC(q

′
) Also,

αC(q
′ ∗ s′) = maq

′{αM(q
′ ∗ s′), αN(q

′ ∗ s′)}

≤ max{max[αM(q
′ ∗ (r

′ ∗ s′), αM(r
′
)],max[αN(q

′ ∗ (r
′ ∗ s′), αN(r

′
)]}

= max{max[αM(q
′ ∗ (r

′ ∗ s′), αN(q
′ ∗ (r

′ ∗ s′)],max[αM(r
′
), αN(r

′
)]}

= max[αC(q
′ ∗ (r

′ ∗ s′), αC(r
′
)].

Similarly, we can prove that, ζC(q
′ ∗ s′) ≥ min[ζC(q

′ ∗ (r
′ ∗ s′), ζC(r

′
)].

Thus the proof ends.

Theorem 3.2.10. Let consider two IFSs M and N in U , such that one is contained

in another. Also M and N are two DIFH-ideals in U . Then intersection of M and N

is also DIFH-ideal in U .

Proof. Consider two DIFH-ideals M = (αM , ζM) and N = (αN , ζN) in U . Again let,

D = M ∩ N = (αD, ζD), where αD = αM ∧ αN and ζD = ζM ∨ ζN . Let q
′
, r
′
, s
′ ∈ U ,

then αD(0) = αM(0)∧αN(0) ≤ αM(q
′
)∧αN(q

′
) = αD(q

′
) and ζD(0) = ζM(0)∨ζN(0) ≥

ζM(q
′
) ∨ ζN(q

′
) = ζD(q

′
). Also,

αD(q
′ ∗ s′) = αM(q

′ ∗ s′) ∧ αN(q
′ ∗ s′)

≤ max[αM(q
′ ∗ (r

′ ∗ s′)), αM(r
′
)] ∧max[αN(q

′ ∗ (r
′ ∗ s′)), αN(r

′
)]

= max{[αM(q
′ ∗ (r

′ ∗ s′)) ∧ αN(q
′ ∗ (r

′ ∗ s′))], [αM(r
′
) ∧ αN(r

′
)]},

[because one is contained in another]

= max[αD(q
′ ∗ (r

′ ∗ s′)), αD(r
′
)].

In similar manner we can proof that, ζD(q
′ ∗ s′) ≥ min[ζD(q

′ ∗ (r
′ ∗ s′)), ζD(r

′
)].

Thus the proof ends.

The example given below supports the Theorem 3.2.9 and Theorem 3.2.10.

Example 12. Let a BCI-algebra U = {0, i, j, k} be considered as given in below

tabulated form:

∗ 0 i j k

0 0 i j k

i i 0 k j

j j k 0 i

k k j i 0



43 CHAPTER 3. DIFH-IDEALS IN BCK/BCI-ALGEBRAS

Let M = (αM , ζM) be an IFS in U as follows:

U 0 i j k

αM 0 0.3 0.2 0.3

ζM 1 0.7 0.8 0.7

Then M = (αM , ζM) is a DIFH-ideal in U .

Again, let N = (αN , ζN) be an IFS in U as defined by

U 0 i j k

αN 0.2 0.4 0.5 0.5

ζN 0.8 0.6 0.5 0.5

Then N = (αN , ζN) is a DIFH-ideal in U .

We also assume that P = M ∪N = (αP , ζP ) where αP = αM ∨ αN and ζP = ζM ∧ ζN
and P is defined as:

U 0 i j k

αP 0.2 0.4 0.5 0.5

ζP 0.8 0.6 0.5 0.5

Then P = (αP , ζP ) is a DIFH-ideal in U .

Now let, Q = M ∩N = (αQ, ζQ) where αQ = αM ∧ αN and ζQ = ζM ∨ ζN .

Then Q is an IFS in U which can be defined as:

U 0 i j k

αQ 0 0.3 0.2 0.3

ζQ 1 0.7 0.8 0.7

So, Q = (αQ, ζQ) is a DIFH-ideal in U .

Theorem 3.2.11. Every DIFH-ideal in U is a DIF-ideal in U .

Proof. Let M = (αM , ζM) be a DIFH-ideal in U , then (i) αM(0) ≤ αM(q
′
); ζM(0) ≥

ζM(q
′
), (ii) αM(q

′ ∗ s′) ≤ αM(q
′ ∗ (r

′ ∗ s′))
∨
αM(r

′
), and (iii) ζM(q

′ ∗ s′) ≥ ζM(q
′ ∗

(r
′ ∗ s′))

∧
ζM(r

′
),∀q′ , r′ , s′ ∈ U. If we put s

′
= 0, then from (ii) and (iii), we get

αM(q
′
) ≤ αM(q

′ ∗ r′)
∨
αM(r

′
) and ζM(q

′
) ≥ ζM(q

′ ∗ r′)
∧
ζM(r

′
), for all q

′
, r
′
, s
′ ∈ U ,

since q
′ ∗ 0 = q

′
, for all q

′ ∈ U .

Hence, M is a DIF-ideal in U .
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The theorem may not hold in reverse direction. That is every DIF-ideal in U is not

a DIFH-ideal in U and this can be substantiated by example below:

Example 13. Let U = {0, q, r} be a BCI-algebra given by the table below:

∗ 0 q r

0 0 r q

q q 0 r

r r q 0

Let M = (αM , ζM) be an IFS in U as defined by

U 0 q r

αM 0 0.8 0.8

ζM 1 0.2 0.2

Then M = (αM , ζM) is a DIF-ideal in U .

Where M is not a DIFH-ideal in U , since αM(q ∗ r) � max{αM(q ∗ (0∗ r)), αM(0)}.

Because, αM(q ∗ r) = 0.8 and max{αM(q ∗ (0 ∗ r)), αM(0)} = αM(0) = 0.

For the IFS M = (αM , ζM), which is a DIF-ideal in U to be a DIFH-ideal in U , now

a condition is created.

Theorem 3.2.12. In an associative BCK/BCI-algebra U , every DIF-ideal becomes

a DIFH-ideal in U .

Proof. Let M = (αM , ζM) be a DIFI in U . Then, αM(0) ≤ αM(q
′
); ζM(0) ≥ ζM(q

′
).

Now, since U is associative, then for q
′
, r
′
, s
′ ∈ U , q

′ ∗ (r
′ ∗ s′) = (q

′ ∗ r′) ∗ s′ . Now,

αM(q
′ ∗ (r

′ ∗ s′))
∨

αM(r
′
) = αM((q

′ ∗ r′) ∗ s′)
∨

αM(r
′
)

= αM((q
′ ∗ s′) ∗ r′)

∨
αM(r

′
)

≥ αM(q
′ ∗ s′)

[because M is a DIF-ideal.]

Therefore, αM(q
′ ∗ s′) ≤ αM(q

′ ∗ (r
′ ∗ s′))

∨
αM(r

′
).

Similarly we can prove that, ζM(q
′ ∗ s′) ≥ ζM(q

′ ∗ (r
′ ∗ s′))

∧
ζM(r

′
), ∀q′ , r′ , s′ ∈ U.

Hence, M is a DIFH-ideal in U . Thus the proof ends.

Let illustrate the Theorem 3.2.12 with the help of the example below.
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Example 14. Let consider a BCK-algebra U that was given in Example 10, with the

table below:

∗ 0 t u v w

0 0 0 0 0 0

t t 0 t t t

u u u 0 u u

v v v v 0 v

w w w w w 0

Here U is an associative BCK-algebra. Let M = (αM , ζM) be an IFS in U as

represented by

U 0 t u v w

ζ̄M 0 0.6 0.4 0.8 0.9

ζM 1 0.4 0.6 0.2 0.1

Hence, M is a DIF-ideal as well as DIFH-ideal in U .

3.3 DP of DIFH-ideals in BCK/BCI-algebras
In BCK/BCI-algebras the DP of DIFSAs and DIFH-ideals are initiated in this

current section, and to study this we first define the product of DIFSs in U ×V . Some

properties connected to these are investigated .

Definition 3.3.1. Let U, V be two BCK/BCI-algebras. Again let K = (αK , ζK) and

M = (αM , ζM) be two DIF sets in U and V respectively. Then the DP of DIFSAs K

and M is symbolized by K ×M = (αK×M , ζK×M), here αK×M : U × V → [0, 1] with

αK×M(k,m) = max{αK(u), αM(v)} and ζK×M : U × V → [0, 1] with ζK×M(k,m) =

min{ζK(u), ζM(v)}∀(k,m) ∈ U × V .

Definition 3.3.2. An IFS K ×M = (αK×M , ζK×M) of BCK/BCI-algebra U × V is

named as a DIFSA in U × V if

(K1)αK×M((k1,m1) ∗ (k2,m2)) ≤ max{αK×M(k1,m1), αK×M(k2,m2)}

(K2)ζK×M((k1,m1)∗(k2,m2)) ≥ min{ζK×M(k1,m1), ζK×M(k2,m2)}, for all (k1,m1), (k2,m2) ∈

U × V .

Theorem 3.3.1. Let K = (αK , ζK) and M = (αM , ζM) be two DIFSAs in U and V

respectively. Then K ×M = (αK×M , ζK×M) is also a DIFSA in U × V .
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Proof. For any (k1,m1), (k2,m2) ∈ U × V . Then

αK×M((k1,m1) ∗ (k2,m2)) = αK×M(k1 ∗ k2,m1 ∗m2)

= max{αK((k1 ∗ k2), αM((m1 ∗m2)}

≤ max{max{αK(k1), αK(k2)},max{αM(m1), αM(m2)}}

= max{max{αK(k1), αM(m1)},max{αK(k2), αM(m2)}}

= max{αK×M(k1,m1), αK×M(k2,m2)

Again,

ζK×M((k1,m1) ∗ (k2,m2)) = ζK×M(k1 ∗ k2,m1 ∗m2)

= min{ζK((k1 ∗ k2), ζM((m1 ∗m2)}

≥ min{min{ζK(k1), ζK(k2)},max{ζM(m1), ζM(m2)}}

= min{min{ζK(k1), ζM(m1)},max{ζK(k2), ζM(m2)}}

= min{ζK×M(k1,m1), ζK×M(k2,m2)

Therefore, for all (k1,m1), (k2,m2) ∈ U × V , K ×M is a DIFSA in BCK/BCI-

algebra U × V . Thus the proof ends.

Theorem 3.3.2. Let K = (αK , ζK) and M = (αM , ζM) be two DIFSA in BCK/BCI-

algebras U and V . Then

(i) αK×M(0, 0) ≤ αK×M(k,m)

(ii) ζK×M(0, 0) ≥ ζK×M(k,m),∀(k,m) ∈ U × V .

Proof. By definition, αK×M(0, 0) = αK×M{(k,m)∗(k,m)} ≤ αK×M(k,m)
∨
αK×M(k,m) ≤

αK×M(k,m).

∴ αK×M(0, 0) ≤ αK×M(k,m),∀(k,m) ∈ U × V .

Again, ζK×M(0, 0) = ζK×M{(k,m)∗(k,m)} ≥ ζK×M(k,m)
∧
ζK×M(k,m) ≥ ζK×M(k,m).

∴ ζK×M(0, 0) ≥ ζK×M(k,m),∀(k,m) ∈ U × V .

Lemma 3.3.1. Let K = (αK , ζK) and M = (αM , ζM) be two DIFSAs in U and V .

Then the assertions below are fulfilled.

(i) αK(0) ≤ αM(v) and αM(0) ≤ αK(u), ∀u ∈ U, v ∈ V .

(ii) ζK(0) ≥ ζM(v) and ζM(0) ≥ ζK(u), ∀u ∈ U, v ∈ V .
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Proof. Let αM(v) < αK(0) and αK(u) < αM(0), for several u ∈ U and v ∈ V .

Then, αK×M(k,m) = max[αK(u), αM(v)] ≤ max[αM(0), αK(0)] = αK×M(0, 0).

Which is a contradiction.

Similarly, let ζK(u) > ζM(0) and ζM(v) > ζK(0), for some u ∈ U and v ∈ V . Now,

ζK×M(k,m) = min[ζK(u), ζM(v)] ≥ min[ζM(0), ζK(0)] = ζK×M(0, 0).

Hence a contradiction arises. Thus the result is proved.

Theorem 3.3.3. If K ×M is a DIFSA in U × V , then either K or M is a DIFSA

in U × V .

Proof. Since K ×M is a DIF -SA in U × V , then for all (k1,m1), (k2,m2) ∈ U × V ,

we have, αK×M((k1,m1) ∗ (k2,m2)) ≤ max{αK×M(k1,m1), αK×M(k2,m2)}.

By putting k1 = k2 = 0, we get,

αK×M((0,m1) ∗ (0,m2)) ≤ max{αK×M(0,m1), αK×M(0,m2)} · · · (i).

Also we have, αK×M((0,m1) ∗ (0,m2)) = αK×M((0 ∗ 0), (m1 ∗ m2)) = max{αK(0 ∗

0), αM(m1 ∗m2)} = αM(m1 ∗m2) · · · (ii).

Again by using Lemma3.3.1 we have, max{αK×M(0,m1), αK×M(0,m2)}

= max{αM(m1), αM(m2)} · · · (iii).

So from (i), (ii)and(iii) we get, αM(m1 ∗m2) ≤ max[αM(m1), αM(m2)].

Similar way we can prove, ζM(m1 ∗ m2) ≥ min[ζM(m1), ζM(m2)]. Hence M is a

DIFSA in U × V .

Definition 3.3.3. An IFS K×M = (αK×M , ζK×M) in U×V is named as a DIFH-ideal

in U × V if

(K3)αK×M(0, 0) ≤ αK×M(k,m) and ζK×M(0, 0) ≥ ζK×M(k,m)

(K4)αK×M((k1,m1)∗(k3,m3)) ≤ max{αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), αK×M(k2,m2)}

(K5)ζK×M((k1,m1)∗(k3,m3)) ≥ min{ζK×M((k1,m1)∗((k2,m2)∗(k3,m3))), ζK×M(k2,m2)},

for all (k1,m1), (k2,m2), (k3,m3) ∈ U × V .

Now, let us study and investigate different marked properties of DPs unreached so

far.

Theorem 3.3.4. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideal in BCK/BCI-

algebras U and V . Then K ×M = (αK×M , ζK×M) is a DIFH-ideal in U × V .

Proof. Let (k,m) ∈ U × V .
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αK×M(0, 0) = max{αK(0), αM(0)} ≤ max{αK(u), αM(v)} = αK×M(k,m).

And, ζK×M(0, 0) = min{ζK(0), ζM(0)} ≥ min{ζK(u), ζM(v)} = ζK×M(k,m).

Now for any (k1,m1), (k2,m2), (k3,m3) ∈ U × V ,

αK×M((k1,m1) ∗ (k3,m3))

=αK×M(k1 ∗ k3,m1 ∗m3)

=max{αK(k1 ∗ k3), αM(m1 ∗m3)}

≤max{max{αK(k1 ∗ (k2 ∗ k3)), αK(k2)},max{αM(m1 ∗ (m2 ∗m3)), αM(m2)}}

=max{max{αK(k1 ∗ (k2 ∗ k3)), αM(m1 ∗ (m2 ∗m3))},max{αK(k2), αM(m2)}}

=max{αK×M{(k1 ∗ (k2 ∗ k3)), (m1 ∗ (m2 ∗m3))}, αK×M(k2,m2)}

≤max{αK×M((k1,m1) ∗ ((k2,m2) ∗ (k3,m3))), αK×M(k2,m2)}.

And

ζK×M((k1,m1) ∗ (k3,m3))

=ζK×M(k1 ∗ k3,m1 ∗m3)

=min{ζK(k1 ∗ k3), ζM(m1 ∗m3)}

≥min{min{ζK(k1 ∗ (k2 ∗ k3)), ζK(k2)},min{ζM(m1 ∗ (m2 ∗m3)), ζM(m2)}}

=min{min{ζK(k1 ∗ (k2 ∗ k3)), ζM(m1 ∗ (m2 ∗m3))},min{ζK(k2), ζM(m2)}}

=min{ζK×M{(k1 ∗ (k2 ∗ k3)), (m1 ∗ (m2 ∗m3))}, ζK×M(k2,m2)}

≥min{ζK×M((k1,m1) ∗ ((k2,m2) ∗ (k3,m3))), ζK×M(k2,m2)}.

Hence for all (k1,m1), (k2,m2), (k3,m3) ∈ U × V , K × M = (αK×M , ζK×M) is a

DIFH-ideal in U × V .

The above Theorem is interpreted by the help of the example given below.

Example 15. Let a BCI-algebra U = {0, i, j, k} be considered in below tabulated form:

∗ 0 i j k

0 0 i j k

i i 0 k j

j j k 0 i

k k j i 0
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Let K = (αK , ζK) be a DIFH-ideal in U as defined by

U 0 i j k

αK 0 0.3 0.2 0.3

ζK 1 0.7 0.8 0.7

Again, let M = (αM , ζM) be a DIFH-ideal in U as defined by

U 0 i j k

αM 0.2 0.4 0.5 0.5

ζM 0.8 0.6 0.5 0.5

Obviously, U × U is also a BCI-algebra.

Here we get, αK×M(0, 0) = αK×M(j, 0) = 0.2, also, αK×M(0, i) = αK×M(j, i) =

αK×M(i, i) = αK×M(k, i) = 0.4, again, αK×M(0, j) = αK×M(0, k) = αK×M(j, j) =

αK×M(j, k) = αK×M(i, j) = αK×M(i, k) = αK×M(k, k) = αK×M(k, j) = 0.5.

Again, αK×M(i, 0) = αK×M(k, 0) = 0.3.

Also, ζK×M(0, 0) = ζK×M(j, 0) = 0.8, also, ζK×M(0, i) = ζK×M(j, i) = ζK×M(i, i) =

ζK×M(k, i) = 0.6, again, ζK×M(0, j) = ζK×M(0, k) = ζK×M(j, j) = ζK×M(j, k) =

ζK×M(i, j) = ζK×M(i, k) = ζK×M(k, k) = ζK×M(k, j) = 0.5.

Again, ζK×M(i, 0) = ζK×M(k, 0) = 0.7.

Then clearly K ×M is a DIFH-ideal in U × U .

Theorem 3.3.5. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideal in U and

V respectively. If K ×M is a DIFH-ideal in U × V , then K ×M must be a DIFSA

in U × V .

Proof. Since K×M is a DIFH-ideal in U×V , then for all (k1,m1), (k2,m2), (k3,m3) ∈

U × V , we have,

αK×M((k1,m1)∗(k3,m3)) ≤ max{αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), αK×M(k2,m2)}.

Bv putting k3 = m3 = 0, we get,

αK×M(k1,m1) ≤ max{αK×M((k1,m1) ∗ (k2,m2)), αK×M(k2,m2)} · · · (i)

Again since, ((k1,m1) ∗ (k2,m2)) ≤ (k1,m1), for all (k1,m1), (k2,m2) ∈ U × V .

Then, αK×M((k1,m1) ∗ (k2,m2)) ≤ αK×M(k1,m1) · · · (ii).

Hence from (i) and (ii) we get, αK×M((k1,m1) ∗ (k2,m2)) ≤ αK×M(k1,m1) ≤

max{αK×M((k1,m1)∗(k2,m2)), αK×M(k2,m2)} ≤ max{αK×M(k1,m1), αK×M(k2,m2)},
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for all (k1,m1), (k2,m2) ∈ U × V .

In the similar manner we can prove that, ζK×M((k1,m1)∗(k2,m2)) ≥ min{ζK×M(k1,m1), ζK×M(k2,m2)},

for all (k1,m1), (k2,m2) ∈ U × V . Thus K ×M is a DIFSA in U × V .

But the reverse of Theorem 3.3.5 may not be hold in general.

Lemma 3.3.2. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideal in U and V

respectively. If K ×M is a DIFH-ideal in U × V , then the followings are true.

(i) αK(0) ≤ αM(v) and αM(0) ≤ αK(u), for all u ∈ U , v ∈ V .

(ii) ζK(0) ≥ ζM(v) and ζM(0) ≥ ζK(u), for all u ∈ U , v ∈ V .

Proof: Proof is same as Lemma3.3.1.

Lemma 3.3.3. In a BCK/BCI-algebra U × V , let K ×M = (αK×M , ζK×M) be a

DIFH-ideal. If (s, t) ≤ (k,m), then αK×M(k,m) ≤ αK×M(s, t) and ζK×M(k,m) ≥

ζK×M(s, t), for all (s, t), (k,m) ∈ U × V .

Proof: Let (s, t), (k,m) ∈ U × V , such that (s, t) ≤ (k,m) implies (s, t) ∗ (k,m) =

(0, 0). Now,

αK×M(k,m) = αK×M((k,m) ∗ (0, 0))

≤ max{αK×M((k,m) ∗ ((s, t) ∗ (0, 0))), αK×M(s, t)}

= max{αK×M((k,m) ∗ (s, t)), αK×M(s, t)}

= αK×M(s, t).

And

ζK×M(k,m) = ζK×M((k,m) ∗ (0, 0))

≥ min{ζK×M((k,m) ∗ ((s, t) ∗ (0, 0))), ζK×M(s, t)}

= min{ζK×M((k,m) ∗ (s, t)), ζK×M(s, t)}

= ζK×M(s, t).

Thus the proof ends.

Theorem 3.3.6. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideals in U and

V . Then
⊕

(K ×M) = (αK×M , ᾱK×M) is a DIFH-ideal of U × V , where, ᾱK×M =

1− αK×M .
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Proof. Since by Theorem 3.3.4, K ×M is a DIFH-ideal in U × V . Hence for (k,m) ∈

U × V .

αK×M(0, 0) ≤ αK×M(k,m). Or, 1 − αK×M(0, 0) ≥ 1 − αK×M(k,m). That is

ᾱK×M(0, 0) ≥ ᾱK×M(k,m)

Now for any (k1,m1), (k2,m2), (k3,m3) ∈ U × V , we have

αK×M((k1,m1)∗(k3,m3)) ≤ max{αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), αK×M(k2,m2)}.

Mext 1−αK×M((k1,m1)∗(k3,m3)) ≥ 1−max{αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), αK×M(k2,m2)}.

That is, ᾱK×M((k1,m1)∗(k3,m3)) ≥ min{1−αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), 1−

αK×M(k2,m2)}.

Finally, ᾱK×M((k1,m1)∗(k3,m3)) ≥ min{ᾱK×M((k1,m1)∗((k2,m2)∗(k3,m3))), ᾱK×M(k2,m2)}.

Hence,
⊕

(K ×M) is a DIFH-ideal in U × V .

Theorem 3.3.7. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideals in U and

V . Then
⊗

(K ×M) = (ζ̄K×M , ζK×M) is a DIFH-ideal in U × V , where, ζ̄K×M =

1− ζK×M .

Proof. By Theorem 3.3.4, K ×M is a DIFH-ideal in U × V . So for (k,m) ∈ U ×

V . ζK×M(0, 0) ≥ ζK×M(k,m). Hence, 1 − ζK×M(0, 0) ≤ 1 − ζK×M(k,m). That is

ζ̄K×M(0, 0) ≤ ζ̄K×M(k,m).

Now for any (k1,m1), (k2,m2), (k3,m3) ∈ U × V , we have

ζK×M((k1,m1)∗(k3,m3)) ≥ min{ζK×M((k1,m1)∗((k2,m2)∗(k3,m3))), ζK×M(k2,m2)}.

Mext 1− ζK×M((k1,m1) ∗ (k3,m3))

≤ 1−min{ζK×M((k1,m1) ∗ ((k2,m2) ∗ (k3,m3))), ζK×M(k2,m2)}.

That is, ζ̄K×M((k1,m1)∗(k3,m3)) ≤ max{1−ζK×M((k1,m1)∗((k2,m2)∗(k3,m3))), 1−

ζK×M(k2,m2)}

. Finally, ζ̄K×M((k1,m1) ∗ (k3,m3))

≤ max{ζ̄K×M((k1,m1) ∗ ((k2,m2) ∗ (k3,m3))), ζ̄K×M(k2,m2)}.

So,
⊗

(K ×M) is a DIFH-ideal in U × V .

Theorem 3.3.8. Let K = (αK , ζK) and M = (αM , ζM) be two DIFH-ideals in BCK-

algebras respectively U and V . Then K×M is a DIFH-ideals in BCK-algebras U×V

if and only if
⊕

(K × M) = (αK×M , ᾱK×M) and
⊗

(K × M) = (ζ̄K×M , ζK×M) are

DIFH-ideals in U × V .
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Proof. The proof can be done at ease taking clues from Theorem 3.3.6 and Theorem

3.3.7.

Proposition 3.3.9. Let in a BCK-algebra U×V an IFS K×M = (αK×M , ζK×M) be

a DIFH-ideal. Then αK×M((0, 0) ∗ ((0, 0) ∗ (k,m))) ≤ αK×M(k,m) and ζK×M((0, 0) ∗

((0, 0) ∗ (k,m))) ≥ ζK×M(k,m),∀(k,m) ∈ U × V .

Proof. This can be proved easily.

Provided that this proposition does not support for all BCI-algebra U × V.

Corollary 3.3.1. Let K ×M = (αK×M , ζK×M) be a DIFH-ideal in U × V . Then the

sets, DαK×M
= {(k,m) ∈ U × V/αK×M(k,m) = αK×M(0, 0)},

and DζK×M
= {(k,m) ∈ U × V/ζK×M(k,m) = ζK×M(0, 0)} are H-ideals in U .

Proof. Let K ×M = (αK×M , ζK×M) be a DIFH-ideal in U × V . Obviously, (0, 0) ∈

DαK×M and DζK×M . Now, let (k1,m1), (k2,m2), (k3,m3) ∈ U×V , such that (k1,m1)∗

((k2,m2)∗ (k3,m3)), (k2,m2) ∈ DαK×M . Then αK×M((k1,m1)∗ ((k2,m2)∗ (k3,m3))) =

αK×M(0, 0) = αK×M(k2,m2). Now, αK×M((k1,m1) ∗ (k3,m3)) ≤ max{αK×M(k1,m1) ∗

((k2,m2) ∗ (k3,m3)), αK×M(k2,m2)} = αK×M(0, 0).

Again, since αK×M is a DFH-ideal in U×V , αK×M(0, 0) ≤ αK×M((k1,m1)∗(k3,m3)).

Therefore, αK×M(0) = αK×M((k1,m1)∗(k3,m3)). It follows that, ((k1,m1)∗(k3,m3)) ∈

DαK×M
, for all (k1,m1), (k2,m2), (k3,m3) ∈ U × V . Therefore, DαK×M

is a H-ideal in

U × V . In the same manner we can prove DζK×M
is also an H-ideal in U × V .

Theorem 3.3.10. For a DIFH-ideal K×M in U×V , either K or M is a DIFH-ideal

in U × V .

Proof. Since K×M is a DIFH-ideal in U×V , then for all (k1,m1), (k2,m2), (k3,m3) ∈

U × V , we have

αK×M((k1,m1)∗(k3,m3)) ≤ max{αK×M((k1,m1)∗((k2,m2)∗(k3,m3))), αK×M(k2,m2)}.

By putting m1 = m2 = m3 = 0, we get,

αK×M((k1, 0)∗ (k3, 0)) ≤ max{αK×M((k1, 0)∗ ((k2, 0)∗ (k3, 0))), αK×M(k2, 0)} · · · (i).

Also we have, αK×M((k1, 0) ∗ (k3, 0)) = αK×M((k1 ∗ k3), (0 ∗ 0)) = max{αK(k1 ∗

k3), αM(0 ∗ 0)} = αK(k1 ∗ k3) · · · (ii).

similarly, αK×M((k1, 0) ∗ ((k2, 0) ∗ (k3, 0))) = αK(k1 ∗ (k2 ∗ k3)) · · · (iii).
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Again by using Lemma 3.3.2 we have, max{αK×M(k1, 0), αK×M(k2, 0)}

= max{αK(k1), αK(k2)} · · · (iv). αK×M(k2, 0) = αK(k2) · · · (v).

So from (i), (ii), (iii), (iv)and(v) we get, αK(k1∗k3) ≤ max{αK(k1∗(k2∗k3)), αK(k2)}.

In the similar way we can proof, ζK(k1∗k3) ≥ min{ζK(k1∗(k2∗k3)), ζK(k2)}. Hence

K is a DIFH-ideal in U × V .

3.4 Upper and lower level sets
Definition 3.4.1. Let in a BCK/BCI-algebra U × V , K ×M = (αK×M , ζK×M) be a

DIFH-ideal, and a, b ∈ [0, 1], Then UC of level a and LC of level b of K ×M , are as

followes:

α≤K×M,a = {(k,m) ∈ (U × V )/αK×M(k,m) ≤ a}

and ζ≥K×M,b = {(k,m) ∈ (U × V )/ζK×M(k,m) ≥ b}.

Theorem 3.4.1. Let K ×M = (αK×M , ζK×M) be an IFS in U × V , then K ×M is

a DIFSA in U × V iff for any a, b ∈ [0, 1], UC of level a and LC of level b of K ×M

are SAs in U × V .

Proof. Assume that K × M be an IFS in U × V . Now for any a, b ∈ [0, 1] and

(k1,m1), (k2,m2) ∈ α≤K×M,a, we have αK×M((k1,m1) ≤ a and also αK×M((k2,m2) ≤ a.

Again let K ×M is a DIFSA in U × V , then

αK×M((k1,m1) ∗ (k2,m2)) ≤ max{αK×M(k1,m1), αK×M(k2,m2)}

≤ max(a, a)

= a

Therefore it implies that (k1,m1) ∗ (k2,m2) ∈ α≤K×M,a.

Similarly, for any (k1,m1), (k2,m2) ∈ ζ≥K×M,b, we have ζK×M((k1,m1) ≥ b and also

ζK×M((k2,m2) ≥ b. then

ζK×M((k1,m1) ∗ (k2,m2)) ≥ min{ζK×M(k1,m1), ζK×M(k2,m2)}

≥ min(b, b)

= b
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Therefore it implies that (k1,m1) ∗ (k2,m2) ∈ ζ≥K×M,b.

Hence, UC of level a and LC of level b of K ×M , are SAs in U × V .

Conversely, let UC of level a and LC of level b of K ×M , are SAs of BCK/BCI-

algebra U×V and if possible also let K×M is not a DIFSA in U×V . Then there exist

(k1,m1), (k2,m2) ∈ U×V , such that αK×M((k1,m1)∗(k2,m2)) > max{αK×M(k1,m1), αK×M(k2,m2)}.

Now let a0 = 1
2
{αK×M((k1,m1)∗(k2,m2))+max{αK×M(k1,m1), αK×M(k2,m2)}}. This

implies, αK×M((k1,m1) ∗ (k2,m2)) > a0 > max{αK×M(k1,m1), αK×M(k2,m2)}. So

(k1,m1) ∗ (k2,m2) /∈ α≤K×M,a. But (k1,m1), (k2,m2) ∈ α≤K×M,a, which is a contradic-

tion. Thus it proves that K ×M is a DIFSA in U × V . Hence the proof ends.

Theorem 3.4.2. If for a, b ∈ [0, 1], α≤K×M,a and ζ≥K×M,b be either contain no elements

or form an H-ideals in U × V . Then K ×M is a DIFH-ideal in U × V .

Proof. Staightforward

3.5 Summary

The chapter includes introduction of the concept of DIFH-ideals in BCK/BCI-

algebras and a study on its essential properties. It also exhibits an extension of the

notion of the DP of IFSs to the DP of two DIFSAs and two DIFH-ideals of two

BCK/BCI-algebras U and V . For any numbers of BCK-algebra same can be made

more widespread. It is mathematically settled that for two DIFH-ideals in U and

V , the DP of them is also a DIFH-ideal in U × V . But the reverse may not hold.

We have also found that the DP of two IFSs becomes DIFH-ideal and DIFSA if for

any a, b ∈ [0, 1] UC of level a and LC of level b of that IFSs are H-ideals or SAs in

BCK-algebra U × V .


