
Chapter 2

Doubt intuitionistic fuzzy ideals ∗

2.1 Introduction

The notion of uncertainty has drawn a havoc attention of the reasearchers during

the last few decades and as a result its concept and definition have gone through a

frequent modification during this time making it a much discussed term in science

and mathematics having a vast sphere of utility. In its dazzling evolution, Zadeh [86],

played the role of an avant-garde. Following him several sebsequent researchers worked

in this field among them Atanassov’s [2] name must be mentioned who propounded

the idea of IFSs as an extension and generalisation of the notion of FSs.

Xi [84], in 1991, introduced concept of FS in BCK-algebras. Then in 1992, Huang

gave another notion of fuzzy set in BCI-algebras. Following the same rout in 1994,

Jun [43] established the definition of DFSA and DF-ideals in BCK/BCI-algebras to

avoid the confusion created in [27] Huang’s defination of fuzzy BCI-algebras by means

of some effective results.

In 2000, Jun and Kim [42] explored the idea of IFSA and IF-ideals in BCK-algebras.

This chapter has inside the concept of DIFSAs and DIF-ideals in BCK/BCI-algebras.

Findings of this chapter show that an IFS of BCK/BCI-algebra is DIFSA and DIF-

ideal if and only if the complement of this IFS is an IFSA and an IF-ideal. And at the

same time we are establishing some common properties related to them.

∗Part of the work presented in this chapter is published in

International Journal of Fuzzy Logic Systems, 5(1) 1-13 (2015).
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2.2 DIFSA in BCK/BCI-algebras

In this section we have defined DIFSA and thereafter moved on investigating its

several properties with the help of some certain examples.

Definition 2.2.1. Let M = (αM , ζM) be an IFS in V , then M is called a DIFSA in

V if

(i) αM(v1 ∗ v2) ≤ αM(v1)
∨
αM(v2), and

(ii) ζM(v1 ∗ v2) ≥ ζM(v1)
∧
ζM(v2), ∀v1, v2 ∈ V.

Theorem 2.2.1. Let M = (αM , ζM) is a DIFSA in V , then

(i) αM(0) ≤ αM(v1), and

(ii) ζM(0) ≥ ζM(v1),∀v1 ∈ V.

Proof. We have that αM(0) = αM(v1 ∗ v1) ≤ αM(v1)
∨
αM(v1) ≤ αM(v1).

∴ αM(0) ≤ αM(v1),∀v1 ∈ V .

Again we have ζM(0) = ζM(v1 ∗ v1) ≥ ζM(v1)
∧
ζM(v1) ≥ ζM(v1).

∴ ζM(0) ≥ ζM(v1),∀v1 ∈ V.

Theorem 2.2.2. Let M = (αM , ζM) be a DIFSA in V . Then for any v1 ∈ V , we have

αM(vm1 ∗ v1)

 ≤ αM(v1), if m is odd

= αM(v1), if m is even.

and

ζM(vm1 ∗ v1)

 ≥ ζM(v1), if m is odd

= ζM(v1), if m is even.

Proof. Let v1 ∈ V , then αM(v1 ∗ v1) = αM(0) ≤ αM(v1).

Let m is odd, and m = 2q − 1, where q is a positive integer.

Now assume that αM(v2q−1
1 ∗ v1) ≤ αM(v1) for some positive integer q.

Then, αM(v2q−1
1 ∗ v1) = αM(v2q+1

1 ∗ v1).
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αM(v
2(q+1)−1
1 ∗ v1) = αM(v2q+1

1 ∗ v1),

= αM(v2q−1
1 ∗ (v1 ∗ (v1 ∗ v1)))

= αM(v2q−1
1 ∗ (v1 ∗ 0))

= αM(v2q−1
1 ∗ v1)

≤ αM(v1)

Hence, αM(vm1 ∗ v1) ≤ αM(v1), if m is odd.

Again, let m is even, and m = 2q.

Now for q = 1, αM(v2
1 ∗ v1) = αM(v1 ∗ (v1 ∗ v1)) = αM(v1 ∗ 0) = αM(v1).

Also assume that, αM(v2q
1 ∗ v1) = αM(v1) for some positive integer q,

then,

αM(v
2(q+1)
1 ∗ v1) = αM(v2q

1 ∗ (v1 ∗ (v1 ∗ v1))),

= αM(v2q
1 ∗ v1)

= αM(v1)

Hence, αM(vm1 ∗ v1) = αM(v1), if m is even.

This proves the first part. similarly we can prove the second part.

Theorem 2.2.3. Let M = (αM , ζM) be a DIFSA in V . Then for any v1 ∈ V , we have

αM(v1 ∗ vm1 ) = αM(0).

and ζM(v1 ∗ vm1 ) = ζM(0).

for m = 1, 2, 3, . . .

Proof: Straightforward

Example 3. Let a BCK-algebra V = {0, d, e, f} be given by the table below:
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∗ 0 d e f

0 0 0 0 0

d d 0 0 d

e e d 0 e

f f f f 0

Let M = (αM , ζM) is an IFS in V defined by

V 0 d e f

αM 0.5 0.5 0.6 0.5

ζM 0.5 0.5 0.3 0.5

Then M = (αM , ζM) is a DIFSA in V .

2.3 DIF-ideals in BCK/BCI-algebras
Current section we have defined DIF-ideal in BCK/BCI-algebras and thereafter

moved on investigating its several properties taking help of some certain examples.

Definition 2.3.1. Let V be a BCK/BCI-algebra. An IFS M = (αM , ζM) in V is

said to be a DIF-ideal if

(F1) αM(0) ≤ αM(v1); ζM(0) ≥ ζM(v1),

(F2) αM(v1) ≤ αM(v1 ∗ v2)
∨
αM(v2),

(F3) ζM(v1) ≥ ζM(v1 ∗ v2)
∧
ζM(v2), ∀v1, v2 ∈ V.

Theorem 2.3.1. Let an IFS M = (αM , ζM) in V be a DIF-ideal in V . If the inequility

v1 ∗ p1 ≤ q1 holds in V , then

(i) αM(v1) ≤ max{αM(p1), αM(q1)}

(ii) ζM(v1) ≥ min{ζM(p1), ζM(q1)}

Proof: Let v1, p1, q1 ∈ V , such that v1 ∗ p1 ≤ q1. So (v1 ∗ p1) ∗ q1 = 0 and thus,

αM(v1) ≤ max{αM(v1 ∗ p1), αM(p1)},

≤ max{max{αM((v1 ∗ p1) ∗ q1), αM(q1)}, αM(p1)}

= max{max{αM(0), αM(q1)}, αM(p1)}

= max{αM(q1), αM(p1)}
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∴ αM(v1) ≤ max{αM(p1), αM(q1)}.

Again, ζM(v1) ≥ min{ζM(v1 ∗ p1), ζM(p1)},

≥ min{min{ζM((v1 ∗ p1) ∗ q1), ζM(q1)}, ζM(p1)}

= min{min{ζM(0), ζM(q1)}, ζM(p1)}

= min{ζM(q1), ζM(p1)}

= min{ζM(p1), ζM(q1)}

Thus it is proved.

Corollary 2.3.1. If M = (αM , ζM) is a DIF-ideal in V , then for any v1, p1, p2, p3, . . . pn ∈

V and (. . . (v1 ∗ p1) ∗ p2) ∗ . . .) ∗ pn = 0,

αM(v1) ≤ max{αM(p1), αM(p2), αM(p3), . . . αM(pn)}

ζM(v1) ≥ min{ζM(p1), ζM(p2), ζM(p3), . . . ζM(pn)}

Proposition 2.3.2. In V let M = (α, ζ) be a DIF-ideal. Then the followings hold for

all v1, v2, v3 ∈ V

(a)if v1 ≤ v2 then α(v1) ≤ α(v2), ζ(v1) ≥ ζ(v2)

(b) α(v1 ∗ v2) ≤ α(v1 ∗ v3)
∨
α(v3 ∗ v2) and ζ(v1 ∗ v2) ≥ ζ(v1 ∗ v3)

∧
ζ(v3 ∗ v2)

Proof. (a) If v1 ≤ v2 then v1 ∗ v2 = 0

Hence α(v1) ≤ α(v1 ∗ v2)
∨
α(v2) = α(0)

∨
α(v2) = α(v2),

and ζ(v1) ≥ ζ(v1 ∗ v2)
∧
ζ(v2) = ζ(0)

∧
ζ(v2) = ζ(v2).

(b) Since (v1 ∗ v2) ∗ (v1 ∗ v3) ≤ (v3 ∗ v2)

It follows from (a) that

α{(v1 ∗ v2) ∗ (v1 ∗ v3)} ≤ α(v3 ∗ v2)

Now α{(v1 ∗ v2) ≤ α{(v1 ∗ v2) ∗ (v1 ∗ v3)}
∨
α(v1 ∗ v3) [∵M = (α, ζ) is a DIF-ideal.]

∴ α(v1 ∗ v2) ≤ α(v3 ∗ v2)
∨
α(v1 ∗ v3)

Again, ζ(v1 ∗ v2) ≥ ζ{(v1 ∗ v2) ∗ (v1 ∗ v3)}
∧
ζ(v1 ∗ v3) ≥ ζ(v3 ∗ v2)

∧
ζ(v1 ∗ v3)

∴ ζ(v1 ∗ v2) ≥ ζ(v1 ∗ v3)
∧
ζ(v3 ∗ v2)
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Theorem 2.3.3. If an IFS M = (αM , ζM) is a DIF-ideal in V , it must be a DIFSA

in V .

Proof. Let M = (αM , ζM) be a DIF-ideal in V .

Since v1 ∗ v2 ≤ v1, ∀v1, v2 ∈ V.

Then αM(v1 ∗ v2) ≤ αM(v1)

and ζM(v1 ∗ v2) ≥ ζM(v1)

So, αM(v1 ∗ v2) ≤ αM(v1) ≤ αM(v1 ∗ v2)
∨
αM(v2) ≤ αM(v1)

∨
αM(v2),∀v1, v2 ∈ V.

[∵M = (αM , ζM) is a DIF-ideal.]

and ζM(v1 ∗ v2) ≥ ζM(v1) ≥ ζM(v1 ∗ v2)
∧
ζM(v2) ≥ ζM(v1)

∧
ζM(v2),∀v1, v2 ∈ V.

This shows that, M = (αM , ζM) is a DIFSA in V .

Example 4. Let us consider V = {0, d, f, g, h} as a BCK-algebra in below tabulated

form:

∗ 0 d f g h

0 0 0 0 0 0

d d 0 0 0 0

f f f 0 f 0

g g g g 0 0

h h f d f 0

Let M = (αM , ζM) be an IFS in V defined by

V 0 d f g h

αM 0 0.4 0.6 0.6 0.6

ζM 1 0.5 0.4 0.4 0.4

Then M = (αM , ζM) is a DIF-ideal in V .

Thus M is a DIF-ideal as well as DIFSA in V .

Converse of Theorem 2.3.3 may not true. Which can be consolidated through Ex-

ample 3 .

As ζM(e) = 0.3

ζM(e) = 0.3 � 0.5 = ζM(e ∗ d)
∧
ζM(d), therefore, M = (αM , ζM) is not a DIF-ideal.

We now provide a condition for an IFS M = (αM , ζM) which is a DIFSA in V to be

a DIF-ideal in V .
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Theorem 2.3.4. Let an IFS M = (αM , ζM) be a DIFSA in V . If the inequiality

v1 ∗ v2 ≤ v3 holds in V , then M would be a DIF-ideal in V .

Proof. Let M = (αM , ζM) be the DIFSA in V . Then from Theorem 2.2.1, αM(0) ≤

αM(v1) . . . (1), and ζM(0) ≥ ζM(v1) . . . (2),∀v1 ∈ V.

As v1 ∗ v2 ≤ v3 holds in V , then from Theorem 2.3.1,

We get, αM(v1) ≤ max{αM(v2), αM(v3)}, ζM(v1) ≥ min{ζM(v2), ζM(v3)},∀v1, v2, v3 ∈

V.

Again since, v1 ∗ (v1 ∗ v2) ≤ v2, Then, αM(v1) ≤ max{αM(v1 ∗ v2), αM(v2)},

and ζM(v1) ≥ min{ζM(v1 ∗ v2), ζM(v2)}.

Hence, M = (αM , ζM) is a DIF-ideal in V .

Theorem 2.3.5. Let an IFS M = (αM , ζM) be a DIF-ideal in V . Then

αM(0 ∗ (0 ∗ v1)) ≤ αM(v1).

ζM(0 ∗ (0 ∗ v1)) ≥ ζM(v1),∀v1 ∈ V.

Proof. αM(0 ∗ (0 ∗ v1)) ≤ αM{(0 ∗ (0 ∗ v1)) ∗ v1} ∨ αM(v1) ≤ αM(0) ∨ αM(v1) =

αM(v1),∀v1 ∈ V.

Therefore, αM(0 ∗ (0 ∗ v1)) ≤ αM(v1), ∀v1 ∈ V.

Again,

ζM(0∗ (0∗v1)) ≥ ζM{(0∗ (0∗v1))∗v1}∧ζM(v1) ≥ ζM(0)∧ζM(v1) = ζM(v1),∀v1 ∈ V.

Therefore, ζM(0 ∗ (0 ∗ v1)) ≥ ζM(v1), ∀v1 ∈ V.

Theorem 2.3.6. Let M = (αM , ζM) be a DIF-ideal in V . Then so is
⊕

M =

{(v1, αM(v1), ᾱM(v1))/v1 ∈ V }.

Proof. Since M = (αM , ζM) is a DIF-ideal in V , then

αM(0) ≤ αM(v1), and αM(v1) ≤ αM(v1 ∗ v2)
∨
αM(v2).

Now, αM(0) ≤ αM(v1) ⇒ 1 − ᾱM(0) ≤ 1 − ᾱM(v1) ⇒ ᾱM(0) ≥ ᾱM(v1), for any

v1 ∈ V.

Now for arbitrary v1, v2 ∈ V ,

αM(v1) ≤ max{αM(v1 ∗ v2), αM(v2)}

⇒ 1− ᾱM(v1) ≤ max{1− ᾱM(v1 ∗ v2), 1− ᾱM(v2)}

⇒ ᾱM(v1) ≥ 1−max{1− ᾱM(v1 ∗ v2), 1− ᾱM(v2)}

⇒ ᾱM(v1) ≥ min{ᾱM(v1 ∗ v2), ᾱM(v2)}.
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So,
⊕

M = {(v1, αM(v1), ᾱM(v1))/v1 ∈ V } is a DIF-ideal in V .

Theorem 2.3.7. Let M = (αM , ζM) be a DIF-ideal in V . Then so is
⊗

M =

{(v1, ζ̄M(v1), ζM(v1))/v1 ∈ V }.

Proof. Since M = (αM , ζM) is a DIF-ideal in V , then ζM(0) ≥ ζM(v1). And ζM(v1) ≥

ζM(v1 ∗ v2)
∧
ζM(v2). Also we have, ζM(0) ≥ ζM(v1) ⇒ 1 − ζ̄M(0) ≥ 1 − ζ̄M(v1) ⇒

ζ̄M(0) ≤ ζ̄M(v1), for any v1 ∈ V.

Consider, for any v1, v2 ∈ V ,

ζM(v1) ≥ min{ζM(v1 ∗ v2), ζM(v2)}

⇒ 1− ζ̄M(v1) ≥ min{1− ζ̄M(v1 ∗ v2), 1− ζ̄M(v2)}

⇒ ζ̄M(v1) ≤ 1−min{1− ζ̄M(v1 ∗ v2), 1− ζ̄M(v2)}

⇒ ζ̄M(v1) ≤ max{ζ̄M(v1 ∗ v2), ζ̄M(v2)}.

Hence,
⊗

M = {(v1, ζ̄M(v1), ζM(v1))/v1 ∈ V } is a DIF-ideal in V .

Theorem 2.3.8. An IFS M = (αM , ζM) is a DIF-ideal in V iff
⊕

M = {(v1, αM(v1), ᾱM(v1))/v1 ∈

V } and
⊗

M = {(v1, ζ̄M(v1), ζM(v1))/v1 ∈ V } are DIF-ideals in V .

Now Theorem 2.3.8 is illustrated by using the example provided below.

Example 5. Let consider V = {0, s, t, u, v} as a BCK-algebra in below tabulated

form:

∗ 0 s t u v

0 0 0 0 0 0

s s 0 s 0 s

t t t 0 t 0

u u s u 0 u

v v v t v 0

Let M = {(v1, ζ̄M(v1)) : v1 ∈ V } be an IVFS defined as

V 0 s t u v

αM 0.4 0.5 0.6 0.5 0.6

ζM 0.5 0.4 0.3 0.4 0.3

Then M = (αM , ζM) is a DIF-ideal in V .

Then
⊕

M = {(v1, αM(v1), ᾱM(v1))/v1 ∈ V } be an IFS defined by
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V 0 s t u v

αM 0.4 0.5 0.6 0.5 0.6

ᾱM 0.6 0.5 0.4 0.5 0.4

And
⊗

M = {(v1, ζ̄M(v1), ζM(v1))/v1 ∈ V } be an IFS defined by

V 0 s t u v

ζ̄M 0.5 0.6 0.7 0.6 0.7

ζM 0.5 0.4 0.3 0.4 0.3

So, it is clear that
⊕

M = {(v1, αM(v1), ᾱM)/v1 ∈ V } and
⊗

M = {(v1, ζ̄M(v1), ζM(v1))/v1 ∈

V } are DIF-ideal.

Theorem 2.3.9. An IFS M = (αM , ζM) is a DIF-ideal in V iff the FSs αM and ¯ζM

are DF-ideals in V .

Proof. In V let M = (αM , ζM) be a DIF-ideal. Then it is obvious that αM is a DF-ideal

in V . Further it can conclude from Theorem 2.3.7 that ζ̄M is a DF-ideal in V .

From reverse angle if, αM is a DF-ideal in V , then

αM(0) ≤ αM(v1) And αM(v1) ≤ max{αM(v1 ∗ v2), αM(v2)},∀v1, v2 ∈ V .

Again since ζ̄M is a DIF-ideal in V , so, ¯ζM(0) ≤ ζ̄M(v1)⇒ 1−ζM(0) ≤ 1−ζM(v1)⇒

ζM(0) ≥ ζM(v1).

And

ζ̄M(v1) ≤ max{ζ̄M(v1 ∗ v2), ¯ζM(v2)}.

⇒ 1− ζM(v1) ≤ max{1− ζM(v1 ∗ v2), 1− ζM(v2)}

⇒ ζM(v1) ≥ 1−max{1− ζM(v1 ∗ v2), 1− ζM(v2)}

⇒ ζM(v1) ≥ min{ζM(v1 ∗ v2), ζM(v2)},∀v1, v2 ∈ V.

Hence, M = (αM , ζM) is a DIF-ideal in V .

Example 6. Let us consider a BCK-algebra V = {0, d1, e1, f1} given by the table
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below:

∗ 0 d1 e1 f1

0 0 0 0 0

d1 d1 0 d1 d1

e1 e1 d1 0 0

f1 f1 d1 f1 0

Let M = (αM , ζM) be an IFS in V defined by

V 0 d1 e1 f1

αM 0.1 0.5 0.7 0.6

ζM 0.8 0.4 0.2 0.4

Since αM(e1) = 0.7 � 0.6 = max{αM(e1 ∗ f1), αM(f1)},

and ζM(e1) = 0.2 � 0.4 = min{ζM(e1 ∗ f1), ζM(f1)}.

Therefore M = (αM , ζM) is not a DIF-ideal in V .

Corollary 2.3.2. For any DIF-ideal M = (αM , ζM) in a BCK/BCI-algebra V . The

sets,

DαM
= {v1 ∈ V/αM(v1) = αM(0)}, and DζM = {v1 ∈ V/ζM(v1) = ζM(0)} are ideals

in V .

Proof. Let M = (αM , ζM) be a DIF-ideal of V. Obviously, 0 ∈ DαM
, DζM .

Now let v1, v2 ∈ V, such that v1 ∗ v2, v2 ∈ DαM
.

Then αM(v1 ∗ v2) = αM(0) = αM(v2).

And so, αM(v1) ≤ max{αM(v1 ∗ v2), αM(v2)} = αM(0)

Again, since αM is a DF-ideal in V , αM(0) ≤ αM(v1), ∴ αM(0) = αM(v1). Hence,

v1 ∈ DαM
. Therefore, DαM

is an ideal in V .

Following the same path it is proved that DζM is also an ideal in V .

Theorem 2.3.10. Intersection of any two DIF-ideals in V , such that one is contained

in another, is also a DIF-ideal in V .

Proof. Let M = (αM , ζM) and N = (αN , ζN) be two DIF-ideals in V .

Again let, R = M ∩N = (αR, ζR), Where αR = αM ∧ αN and ζR = ζM ∨ ζN .

Let v1, v2 ∈ V , then, αR(0) = αM(0) ∧ αN(0) ≤ αM(v1) ∧ αN(v1) = αR(v1).
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And ζR(0) = ζM(0) ∨ ζN(0) ≥ ζM(v1) ∨ ζN(v1) = ζR(v1). Also,

αR(v1) = αM(v1) ∧ αN(v1)

≤ max[αM(v1 ∗ v2), αM(v2)] ∧max[αN(v1 ∗ v2), αN(v2)]

= max{[αM(v1 ∗ v2) ∧ αN(v1 ∗ v2)], [αM(v2) ∧ αN(v2)]}

= max[αR(v1 ∗ v2), αR(v2)].

Similarly, it can be verified that ζR(v1) ≥ min[ζR(v1 ∗ v2), ζR(v2)].

Thus it is proved.

Theorem 2.3.11. Union of any two DIF-ideals in V , is also a DIF-ideal in V .

Proof. Assume that M = (αM , ζM) and N = (αN , ζN) are two DIF-ideals in V .

Again let, R = M ∪ N = (αR, ζR). Where αR = αM ∨ αN and ζQ = ζM ∧ ζN . Let

v1, v2 ∈ V , then, αR(0) = αM(0) ∨ αN(0) ≤ αM(v1) ∨ αN(v1) = αR(v1).

And ζR(0) = ζM(0) ∧ ζN(0) ≥ ζM(v1) ∧ ζN(v1) = ζR(v1).

Also,

αR(v1) = αM(v1) ∨ αN(v1)

≤ max[αM(v1 ∗ v2), αM(v2)] ∨max[αN(v1 ∗ v2), αN(v2)]

= max{[αM(v1 ∗ v2) ∨ αN(v1 ∗ v2)], [αM(v2) ∨ αN(v2)]}

= max[αR(v1 ∗ v2), αR(v2)].

In the similer way, We can verify that, ζR(v1) ≥ min[ζR(v1 ∗ v2), ζR(v2)]. Thus it is

proved.

Example 7. Consider a BCK-algebra V = {0, k′ , l′ ,m′ , n′} as follows:

∗ 0 k
′

l
′

m
′

n
′

0 0 0 0 0 0

k
′

k
′

0 0 0 0

l
′

l
′

l
′

0 l
′

0

m
′
m
′

m
′

m
′

0 0

n
′

n
′

l
′

k
′

l
′

0
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Let an IFS M = (αM , ζM) in V , is given as follows:

V 0 k
′

l
′

m
′

n
′

αM 0 0.62 0.65 0.62 0.65

ζM 1 0.34 0.32 0.34 0.32

Then M = (αM , ζM) is a DIF-ideal in V .

Again let, N = (αN , ζN) be an IFS in V defined by

V 0 k
′

l
′

m
′

n
′

αN 0.22 0.56 0.58 0.56 0.58

ζN 0.72 0.44 0.42 0.44 0.42

Then N = (αN , ζN) is a DIF-ideal in V .

Now let P = M ∩N = (αP , ζP ), Where αP = αM ∧ αN and ζP = ζM ∨ ζN . Then P

is an IFS which can be defined by:

V 0 k
′

l
′

m
′

n
′

αP 0 0.56 0.58 0.56 0.58

ζP 1 0.44 0.42 0.44 0.42

Then P = (αP , ζP ) is a DIF-ideal in V .

We also assume that Q = M ∪ N = (αQ, ζQ). Where αQ = αM ∨ αN and ζR =

ζM ∧ ζN .

Now Q = (αQ, ζQ) has been defined as:

V 0 k
′

l
′

m
′

n
′

αQ 0.22 0.62 0.65 0.62 0.65

ζQ 0.72 0.34 0.32 0.34 0.32

Then Q = (αQ, ζQ) is a DIF-ideal in V .

Let M = (αM , ζM) be an IFS in V , then UC of level c and LC of level d of the IFS

M = (αM , ζM) in V ,is as followes:

α≤M,c = {v1 ∈ V/αM(v1) ≤ c},

ζ≥M,d = {v1 ∈ V/ζM(v1) ≥ d},where c, d ∈ [0, 1].

Theorem 2.3.12. If M = (αM , ζM) be a DIF-ideal in V , then α≤M,c and ζ≥M,d are ideals

in V for c, d ∈ [0, 1]
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Proof. Let M = (αM , ζM) be a DIF-ideal in V , and let c ∈ [0, 1] with αM(0) ≤ c.

Then we have, αM(0) ≤ αM(v1),∀v1 ∈ V , but αM(v1) ≤ c,∀v1 ∈ α≤M,c. So 0 ∈ α≤M,c.

Let v1, v2 ∈ V be such that v1 ∗ v2 ∈ α≤M,c and v2 ∈ α≤M,c, then, αM(v1 ∗ v2) ∈ α≤M,c

and αM(v2) ∈ α≤M,c. So, αM(v1 ∗ v2) ≤ c and αM(v2) ≤ c.

Since αM is a DF-ideal in V , it follow that, αM(v1) ≤ αM(v1 ∗ v2)
∨
αM(v2) ≤ c and

hence v1 ∈ α≤M,c. Therefore α≤M,c is ideal in V for c ∈ [0, 1].

In similar way, it is proved that ζ≥M,d is ideal in V for c, d ∈ [0, 1].

Theorem 2.3.13. If α≤M,c and ζ≥M,d are either contained no elements or formed ideals

in V for c, d ∈ [0, 1], then M = [αM , ζM ] is a DIF-ideal in V .

Proof. Let α≤M,c and ζ≥M,d be either contained no elements or formed ideals in V for

c, d ∈ [0, 1]. For any v1 ∈ V , let αM(v1) = c and ζM(v1) = d. Then v1 ∈ α≤M,c

∧
ζ≥M,d,

so α≤M,c 6= φ 6= ζ≥M,d. Since α≤M,c and ζ≥M,d are ideals in V , therefore 0 ∈ α≤M,c

∧
ζ≥M,d.

Hence, αM(0) ≤ c = αM(v1) and ζM(0) ≥ d = ζM(v1), where v1 ∈ V .

If there exist v
′
1, v

′
2 ∈ V such that αM(v

′
1) > max{αM(v

′
1 ∗ v

′
2), αM(v

′
2)}, then by

taking, c0 =
1

2
(αM(v

′
1) +max{αM(v

′
1 ∗ v

′
2), αM(v

′
2)}.

We have, αM(v
′
1) > c0 > max{αM(v

′
1 ∗v

′
2), αM(v

′
2)}. So, v

′
1 /∈ α

≤
M,c0

, (v
′
1 ∗v

′
2) ∈ α≤M,c0

and v
′
2 ∈ α

≤
M,c0

, that is α≤M,c0
is not an ideal in V , Hence a contradiction arises.

Eventually, let there exist p, q ∈ V such that ζM(p) < min{ζM(p∗q), ζM(q)}. Taking

d0 =
1

2
(ζM(p

′
) +min{ζM(p

′ ∗ q′), ζM(q
′
)}, then

min{ζM(p
′ ∗ q′), ζM(q

′
)} > d0 > ζM(p

′
).

Therefore, p ∗ q ∈ ζ≥M,d and q ∈ ζ≥M,d but p /∈ ζ≥M,d. Again a contradiction. This

completes the proof.

But if an IFS M is not a DIF-ideal in V , then α≤M,c and ζ≥M,d are not ideals in V for

c, d ∈ [0, 1], which is illustrated by the example below.

Example 8. Let V = {0, d1, e1, f1} be a BCK-algebra [using Example 6] with the

following cayley table:

∗ 0 d1 e1 f1

0 0 0 0 0

d1 d1 0 d1 d1

e1 e1 d1 0 0

f1 f1 d1 f1 0
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Let M = (αM , ζM) be an IFS in V defined by

V 0 d1 e1 f1

αM 0.1 0.5 0.7 0.6

ζM 0.8 0.4 0.2 0.4

Which is not a DIF-ideal in V .

For c = 0.67 and d = 0.25, we get α≤M,c = ζ≥M,d = {0, d1, f1}, which are not ideals in

V , as e1 ∗ d1 = d1 ∈ {0, d1, f1}, and d1 ∈ {0, d1, f1}, but e1 /∈ {0, d1, f1}.

2.4 Summary

The purpose of this chapter is to define the notion of DIFSAs, DIF-ideals as an

extention of DFSAs and DF-ideals in BCK/BCI-algebras. It is shown that the union

of two DIF-ideals in BCK/BCI-algebra is also a DIF-ideal. At the same time we also

investigated that every DIF-ideal must be a DIFSA but in general it may not be true

in reverse direction, that is illustrated by an example. Further a condition is presented

to exibit that a DIFSA becomes a DIF-ideal in BCK/BCI-algebra.


