M.Sc. 1st Semester Examination, 2012 ELECTRONICS

(Network Analysis and Synthesis)

(Theory)

PAPER-ELC-103

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and three questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. (a) Define 'characteristic impedence' of a two port network.
 - (b) Draw the equivalent T-section network for the given Π -section network.

- (c) Draw equivalent CE-transistor circuit using 'h'-parameters.
- (d) Test whether the following system function is positive real function or not

$$H(s) = \frac{s^2 + 10s + 5}{s + 3}.$$

(e) A network is expressed by the following differential equation:

$$5\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 2\frac{dx}{dt} + x$$

where, 'x' is the input and 'y' is the output obtain the transfer function. 2×5

2. (a) The reduced incidence matrix of a network is given below:

Br			anches ->					
		1 .	2	3	4	5	6	
Nodes →	a	1	0 ·	0	-1	0	0	
	\boldsymbol{b}	0	1 -	0	1	-1	0	
	c	0	0	1	0	1	-1	
	d							

Find:

- (i) Compete incidence matrix
- (ii) Without drawing the connected graph, the branches in series and also in parallel
- (iii) Whether branches (1, 4, 5) form a tree or not.
- (b) For the network as shown in the figure find the current ' Γ ' through the 2Ω resistance using Theyenin's theorem

3. (a) Draw the pole-zero diagram of the following system function

$$H(s) = \frac{5s(s^2 + 5s + 6)}{(s+1)(s^2 + 3s + 9)}$$

(b) Following test data were obtained for an unknown two-port network experimentally. Obtain the *Y*-parameters.

Status of circuit	V_1	V_2	I_1	I_2
Output shorted	25 V	0	5 mA	0-2 mA
Input shorted	0	30 V	6 mA	3 mA

5 + 5

- 4. (a) A T section low pass filter has a series inductance 80 mH and shunt capacitance $0.022 \mu F$. Determine the cut-off frequency and nominal design impedance R_0 . Also design an equivalent Π section.
 - (b) Design a high pass active filter of cut-off frequency 1 kHz with a pass-band gain of 2. 5+5
- 5. (a) The driving point impedance of an L-C network is given by

$$Z(s) = \frac{5(s^2+1)(s^2+9)}{s(s^2+4)}$$

obtain Foster first form of network inserting the values of all the elements.

(b) The driving point impedance of a R-C network is given as

$$Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$$

obtain Cauer any of the two forms of network and insert the values of the elements. 5+5

- **6.** (a) Find the convolution integral where $f_1(t) = e^{-at}$ and $f_2(t) = t$.
 - (b) Find the final value of the function whose Laplace Transform is,

$$I(s) = \frac{s+6}{s(s+3)}$$

check the result by solving it for i(t).

(c) A sinusoidal voltage 25 sin 10t is applied at t = 0 to a circuit as shown in the figure. By the method of Laplace transform find the current i(t). Initial conditions are taken to be zero.

[Internal Assessment: 10 Marks]