M.Sc. 2nd Semester Examination, 2012 ELECTRONICS

(Electronic Materials)

PAPER-ELC-203

(Theory)

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. (a) What is a Burgers vector?
 - (b) What do you understand by "free electron gas"?
- (c) Explain briefly the difference between non -degenerate and degenerate semiconductors.

- (d) Distinguish between type I and type II superconductors.
- (e) Mention the uses of SiO₂ material in VLSI technology. 2 × 5
- 2. (a) What is meant by crystal imperfections? Classify them in order of geometry.
 - (b) Describe with suitable diagrams edge dislocations and screw dislocations in crystal lattice. (1+3)+(3+3)
- 3. (a) Discuss general features of electrical conductivity of metals.
 - (b) Define fermi energy. Derive an expression for the density of states and hence show that at OK, the average energy of electron is (3/5)th of the fermi energy.
- 4. (a) Name the different scattering processes involved in the transport of electrons in semiconductors and identify the dominant process.
 - (b) Consider a semiconductor with effective mass $m^* = 0.26 \text{ m}_0$. The optical phonon energy is 50 meV. The carrier scattering relaxation time is

10⁻¹³ s at 300 K. Calculate the electric field at which electron can emit optical phonons on the average.

- (c) Explain low-field and high-field mobility. (2+1)+3+(2+2)
- 5. (a) What is Meissner effect? Show that a soft superconductor is a perfect diamagnetic material.
 - (b) What is superconducting energy gap? Name the experimental evidence in support of that.
 - (c) Explain 1-2-3 superconductors. (2+3)+(2+1)+2
- 6. Indium antimonide has E_g = 0.23 eV; dielectric constant ∈ = 18; electron effective mass m_e = 0.015 m.
 Calculate (a) the donor ionization energy; (b) the ionization of the ground state or bit (c) At what minimum donor concentration will appreciable overlap effects between the orbits of adjacent impurity atoms occur.

[Internal Assessment; 10 Marks]

akedone tonishioned of 130