2011

M.Sc.

1st Semester Examination

ELECTRONICS

PAPER-ELC-106

(PRACTICAL)

Full Marks: 50

Time: 3 Hours

gures in the right-hand margin indicate full marks.

lidates are required to give their answers in their own words as far as practicable.

(Electronic Circuit Lab)

r any one question, selecting it by a lucky draw.

gn a regulated power supply using 78xx group lator) and study its performance.

out Voltage = ...V, Output Current = ...mA.

Working formula.

Drawing of circuit diagram with labelling.

3

4

Implementation of the circuit on bread board. c) Recording of data for load and line d) regulation characteristics (one set each). 5+ e) Drawing of graphs. 4+ Calculation of percentage regulation and n stability factor. 2+ Discussion of the results obtained. g) 2. Design a regulated power supply of variable output usin LM317. Output Voltage = ...V, Output Current = ...mA. Working formula. aì Circuit diagram with labelling. b) Circuit Implementation on bread board. c) Recording of data for load and line d) regulation characteristics (one set each). 5+ Drawing of graphs. e) 4+ Calculation of percentage regulation and n stability factor. 24 Discussion of the results obtained. g)

Design a regulated power supply using a power transistor as a pass element and an OPAMP as comparator.

Output Voltage = ...V, Output Current = ...mA.

- a) Working formula. 4
- b) Circuit diagram with labelling.
- c) Design*considerations and components
 to be used.
- d) Circuit Implementation on a bread board. 4
- e) Recording of data for load and line regulation characteristics (one set each). 4+4
- f) Drawing of graphs. 3+3
- g) Calculation of percentage regulation and stability factor. 2+2
- h) Discussion of the results obtained.
- Design a regulated power supply using power transistor as a pass element and another transistor as a comparator.

Output Voltage = ...V, Output Current = ...mA.

- a) Working formula. 4
- b) Circuit diagram with labelling. 3
- c) Design considerations and componentsto be used.

- d) Circuit Implementation on a bread board.
- e) Recording of data for load and line regulation characteristics (one set each).
- f) Drawing of graphs. 3+
- g) Calculation of percentage regulation and stability factor.
- h) Discussion of the results obtained.
- 5. Design a low-pass active Butterworth filter with a Rol off rate of 20dB/decade for cut-off frequency = 2 KHz ar pass band gain of 1 and study its performance.
 - a) Working formula.
 - b) Circuit diagram with labelling.
 - Design considerations for cut-off frequency and pass band gain.
 - d) Implementation of the circuit.
 - Recording of data for frequency response characteristics.
 - f) Drawing of graph.
 - g) Finding and comparison of Cut-off frequency and Roll-off rate with the supplied value.

$$(2+1\frac{1}{2})+(2+1\frac{1}{2})$$

h) Discussion of the results obtained.

4+

6.	Design a non-inverting active high-pass filter at a cut-off frequency of 3 KHz and pass band gain of 1 dB using only one R-C section (network) and study its performance.					
	a)	Working formula.	4			
	b)	Circuit diagram with labelling.	. 3			
	c)	Design considerations for cut-off frequency a	ınd			
		gain.	4			
	ď)	Implementation of the circuit.	3			
	e)	Recording of data for frequency response				
		characteristics.	8			
	f)	Drawing of graph.	4			
	g)	Finding and comparison of the Cut-off	•			
		frequency and Roll-off rate of it with the				
	•	supplied value. $(2+1\frac{1}{2})+($	$(2+1\frac{1}{2})$			
	h)	Discussion of the results obtained.	2			
7.	Design a second order active low-pass Butterworth filter and study its performance.					
	a)	Working formula.	4			
	b)	Circuit diagram with labelling.	3			
	c)	Design considerations for cut-off frequency =				
		Hz and gain = dB.	5			

- d) Implementation of the circuit on a bread boar
- e) Recording of data for frequency response characteristics.
- f) Drawing of graph.
- g) Finding and comparison of the Cut-off frequency and Roll-off rate of it with the supplied value. (2+1)+1
- h) Discussion of the results obtained.
- Design a second order active high-pass (Butterw using two different R-C sections (Network) and stuce performance.
 - a) Working formula.
 - b) Circuit diagram with labelling.
 - c) Design considerations for cut-off frequency =

 _____ KHz and pass band gain =

 ____ dB.
 - d) Implementation of the circuit on a bread boar
 - Recording of data for frequency response characteristics and drawing of graph.
 - Finding and comparison of the Cut-off frequency and the Roll-off rate of it

		with the supplied value. (2+1)+	(2+1)			
	g)	Discussion of the results obtained.	2			
Study the performance of a logarithmic amplifier usin OPAMP.						
	a)	Working formula.	4			
	b)	Drawing of circuit diagram with labelling.	3			
	c)	Circuit Implementation on bread board.	3			
	d)	Recording of data by varying the input				
		voltage at small steps.	10			
	e)	Drawing of graphs.	4+4			
	f)	Discussion about the nature of curves and				
		the results obtained.	3			
	g) Comment on possible application of the circuit					
		using the result obtained.	4			
10. Study the performance of an antilogarithmic amplifier using OPAMP.						
	a)	Working formula.	4			
	b)	Drawing of circuit diagram with labelling.	3			
	c)	Circuit Implementation on bread board.	3			

d)	Recording of data by varying the input			
	voltage at small steps.	10		
e)	Drawing of graphs.	4+4		
f) Discussion about the nature of curves and				
	the results obtained.	3		
g)	Comment on possible application of the circuit	. 4		

Distribution of Marks

	Total	:	50 Marks
Experiment		:	35 Marks
Viva Voce		:	10 Marks
Laboratory note boo	:	05 Marks	