M.Sc. 2nd Semester Examination, 2011 **ELECTRONICS**

(Electronic Materials)

PAPER-ELC-203

(Theory)

Full Marks: 40

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

- 2×5
- (a) Classify different imperfections in crystals.
- (b) Explain drift mobility and Hall mobility of charge carriers.

- (c) Why does the field seen by the dipoles in a solid differ from the applied field?
- (d) What are Cooper pairs?
- (e) Stoichiometric ZnO is an insulator but non-stoichiometric ZnO is an *n*-type semiconductor. Explain.
- (f) What type of material do you choose for a solar cell and why?
- 2. (a) Derive the equation relating the number of vacancies n found in a monoatomic crystal to the energy E_a required to remove one atom to the crystal's exterior.
 - (b) Calculate the ratio of number of vacancies in equilibrium at 300 K in Al to that produced by rapid quenching from 800 K. Enthalpy of formation of vacancies in Al is 68 kJ mol⁻¹.
 - (c) Explain tilt boundary and twin boundary crystal imperfections.

 $4+3+\left(1\frac{1}{2}+1\frac{1}{2}\right)$

- 3. (a) Establish the Boltzmann transport equation (BTE).
 - (b) With the help of BTE show that the electrical conductivity of a free electron gas is $\sigma = ne^2\tau/m$, where the symbols have their usual meanings. 5+5
- **4.** (a) What is Hall effect? Find the Hall coefficient for an intrinsic semiconductor.
 - (b) The electron and hole mobilities in a semiconductor are $0.8 \text{ m}^2\text{V}^{-1}\text{s}^{-1}$ and $0.02 \text{ m}^2\text{V}^{-1}\text{s}^{-1}$ respectively. The electron concentration in the semiconductor is $2.5 \times 10^{18} \text{m}^{-3}$ and the Hall coefficient is zero. Calculate the intrinsic carrier concentration.
 - (c) Explain a quantum well structure. (2+3)+2+3
- 5. (a) What are the different contributions to the total polarization of a dielectric material?

- (b) Why does the static dielectric constant in alkali halides differ from the high frequency dieletric constant? What is the physical significance of complex dielectric constant?
- (c) Si has the dielectric constant 12, and the edge-length of the conventional cubic cell of Si lattice is 5.43 Å. Calculate the electronic polarizability of Si atoms.
 3 + (2 + 2) + 3
- 6. Write notes on any two:

 5×2

- (i) Josephson effect
- (ii) Photoconductor
- (iii) Materials for VLSI.