Total No. of pages :

1.

2019

Part - II

PHYSICS

(Honours)

Paper - IV

(New syllabus)

Full Marks - 90

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

GROUP - A

Answer any **two** questions : 15×2
(a) Define gyromagnetic ratio and find the

- (a) Define gyromagnetic ratio and find the relation between μ

 s and S in terms of gyro magnetic ratio.
 - (b) Apply the space quantization principle to determine the values of J for the following values of L and S vectors, L=2, $S = \frac{3}{2}$. Also find the spectroscopic notations and specify the ground state.

P.T.O.

- (c) The ground state of chlorine is ²P_{3/2} find its magnetic moment. How many substrate will the ground state split in a weak magnetic field. 2+2
- (d) 'Infrared and Raman measurements complement each other'- Justify. 2
- (e) 'Explain the advantages of using laser as a Raman source. 2
- (a) What do you mean by 'generalised co-ordinates'? What do they signify? What is the advantage of using them? 1+1+2
 (b) Can you define lagrangian uniquely? Show
 - by direct substitution $L'(q, \dot{q}, t) = L(q, \dot{q}, t)$ + $\frac{dF(q,t)}{dt}$ also satisfies lagrange's equations, where f(q,t) is any differentiable Functions of generalined co-ordinate and time. 1+3
 - (c) Set up the Hamilton's equations of motion for the following lagrangian $L = L(q, \dot{q}, t) = \frac{1}{2}m$ $(\dot{q}^2 \sin^2 wt + q\dot{q}w \sin^2 \omega t + q^2w^2)$ 2+2
 - (d) Define cyclic cordinates. Show that the generatised momenta corresponding to cyclic co-ordinates are conserred.

- (a) State the semi emperical mass formula for nuclear binding energy.
 - (b) What is Mass parabola? How does mass parabola explain the stability of nuclei of some isobar.
 - (c) What do you mean by find structure of α particle? 2
 (d) What is Range of α -particle? What is stragling of range. 1+1
 - (e) A particular type of nucleus with decay cinstant is being produced artificially using accelerator at a steady rate of P nuclei per second show that the number of nuclei present t sec after the production starts is $N(t) = \frac{p}{\lambda}$
- (I e⁻λ t).
 (a) Describe the use of an OPAMP as an inverting amplifier. What is 1/3 voltage gain?
 What is the phase difference between the
 - inverting terminal a virtual earth? 3+1+1+2(b) Show that for the given circuit, the frequency at which the voltage gain falls to $\frac{1}{\sqrt{2}}$ of its low

input and output voltages? Why is the

frequency value is given by $\frac{1}{2\Pi CR_2}$

(c) Design a 4bit shift register using D Flip-flops and explain its operation. 2+2

GROUP - B

Answer any five questions:

Laser.

(a) What is population inversion in LASER? How is the population in version achived in He-Ne

- (b) Calculate the ratio of stimulated to spontaneous emission rates for the wavelength $\lambda = 6000$ A° at 250°C.
- 6. (a) State and expalin Moseley's Law. What is its importance? 2+2
 - (b) The K-absorption edge in tungsten is λ_{α} =0.178A° and the wavelengths of some

5.

8×5

2 + 3

lines in K series are λ_{α} =0.210A	and
λ_{β} =0.184A. If a tungsten target is bomba	arded
with electons of 120 KeV, Find the value	ue of
the maximum kinetic energies of elect	trons
emitted from n=1, 2 levels.	4
Convert (1A7.2F) ₁₆ to decimal.	2
Show that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$	⊕ C)
symbols have their usual meaning.	3
Design a two input XOR gate exclusively	with
the help of NAND gates.	3

(c)

Draw the circuit diagram of a phase shift 8. (a) oscillator, explain its operation, and find its frequency of oscillation. What is the minimum gain required for sustained osillation?

1+2+2+2

- Why are RC oscillators commonly used in (b) labaratories
- 9. (a) Establish the equation of continuity of an ideal fluid of density P. What is its physical content? Find the forms (a) in streamline motion and (b) for incompressible fluicls. 3+1+1+1
 - (b) Find the number of degrees of freedom in case two point masses connected by a massless spring. 2

7.

(a)

(d)

 $V(x) = x^4 - 8x^3 - 6x^2 + 24x$ Find the points of stable and unstable equilibrium. Find the normal co-ordinates of the system (b) having the Lagragian L given by 4 $L = \frac{1}{2} \left(\dot{x^2} + \dot{y^2} \right) - \frac{1}{2} \left(W_1^2 x_1^2 + W_2^2 x_2^2 \right) + \alpha xy$ What are the process through which α -ray 11. (a) 3 interact with matter? (b) Explain qualitatively that emission of-K shell electron is more probable during pholtoelectric emission by α -ray. 3 Calculate the minimum energy required for (c) 2 pair production. What is alkali spectra? Explain the origin of 12. (a) Na - D, and D, line. 1+3 What is Auger effect? 2 (b) Calculate Lande g-factor for the state 3p₁. 2 (c)

6

P/19/BSc/Part-II/Phy-IV/(H)

Contd.

The potential energy of a partical is given by

10.

(a)

2GROUP - C

Answer any **five** questions:

4×5

13. Show that the transformations

Q =
$$ln[1 + \sqrt{q} Cosp]$$
 and
P = $2\sqrt{Q} Sin(p)[1 + \sqrt{q} Cosp]$
are canonical.

4

- 14. State with reasons the nature of constraints in the following cases.
 - (a) A disc rolling down an incline plane without slipping.
- (b) A molecule inside a gas container. 2×2
 15. In a stern-Gerlach experiment, the gradient of magnetic field is 5 volts m⁻²/mm with a pole pieces 0.07m long. A narrow beam of silver atoms from an oven at 1250k passes through the magnetic field. Calculate the separation of the beams as

they emerge from the magnetic field.

4

16. A beam of electrons enters a uniform magnetic field of fluxdensity 1.2wb/m². Find the energy difference between electrons whose spins are parallel and antiparallel.

	(~)			
		ing AF signals". Justify the statement.	2	
	(b)	Why are RC oscillators commonly used	in	
		Laboratories.	2	

17 (a) "I C oscillators are not suitable for generat-

- 18. Find the relation between the open loop and closed loop gain of a negative amplifier. Hence show that negative feed back can improve the stability of gain of amplifier.
 2+2
- 19. (a) An equality detector given an output if A and B are 1 both or o both Implement the circuit.2
 - (b) Draw a single bit comparator circuit using basis gates. 2
- 20. $^{7}Li(Z=3)$ and $^{7}Be(Z=4)$ have the atomic masses 7.016005u and 7.016929u respectively. Which of them shown β -activity and of what type ? Calculate Q for it.