PHYSICS

[Honours]

PAPER -II

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

Answer any two questions:

 15×2

1. (a) A mass is projected vertically upward from O with initial velocity V_0 . Find the maximum height reached, assuming that resistance of air is proportional to velocity.

- (b) The equation of a orbit of a particle moving under a central force is $r = a(1 + \cos\theta)$, a being constant. Find the nature of the force. 3
- (c) Find the gravitational attraction between the two hemispherical halves of a solid sphere. 4
- (d) Calculate the moment of inertia of a solid hemispherical object about an axis passing through its centre of mass and parallel to one of its principal diameter.
- (a) Write down Maxwell's velocity distribution law of gas molecules. Deduce the energy distribution law from it.
 - (b) What do you mean by most probable velocity? Expressing the velocity C as a fraction of the most probable velocity, deduce the reduced form of Maxwell's velocity distribution law.
 - (c) Give Einstein's analysis of Brownian motion and derive Einstein's equation.

10			
3.	(a)	A point charge $q/2$ is placed at the centre of	
		a spherical cavity of radius r inside a neutral	
8		spherical conductor of radius 4r. Find the	
B		surface density of induced charge on the	
ï		boundary of cavity.	7

- (b) Using Biot-Savart's law prove that $\vec{\nabla} \cdot \vec{B} = 0$. 4
- (c) What do you mean by polarization of dielectrics? Obtain the modified Gauss's law in dielectric medium. 2+3
- (d) What are the importances of Laplace's equation in electrostatics.
- 4. (a) Establish the boundary conditions satisfied by \vec{B} and \vec{H} at the interface of two media of different permeabilities, assuming that there is no free surface current.
 - (b) Determine the force between two equal parallel circular coaxial coils which are a small distance apart in free space and carry the currents I_1 and I_2 . Assume that each of the coils has a single turn.

- (c) Define emissive and absorptive power of a black-body. State Kirchhoff's law of thermal radiation. 2+2+1
- (d) What do you mean by black-body radiation.

GROUP - B

Answer any **five** questions: 8×5

- 5. (a) Prove that for a system of particles, the total external torque is equal to the rate of change of angular momentum of the system, provided that the internal force between the particles is central.
 - (b) Show that the angular momentum of a body moving under a central force is conserved.
- 6. Find the relation between the time rates of change of a vector in a fixed and a rotating frame. Hence find an expression of Coriolis acceleration.

(2+2)+4

7. (a) Prove that for a gm-mole of a van der Waal gas,

$$C_p - C_v = R \left[1 + \frac{2ap}{R^2 T^2} \right]$$
 5

- (b) Establish Clausius-Clapeyron equation for first order phase transition.
- Prove the relation $K = \eta C_{\nu}$, where the symbols have their usual meanings.
- 9. Set up the differential equation for the flow of heat through a metal bar of uniform cross -section considering the loss of heat by radiation from its surfaces.
- 10. (a) A charge q coulomb is distributed uniformly throughout a non conducting spherical volume of radius R metre. Show that the potential at a distance r from the centre $(r \le R)$ is given by

$$\phi = \frac{1}{4\pi \in_0} \frac{q(3R^2 - r^2)}{2R^3}$$

3

8

(<i>b</i>)	Find	the	expression	for	average	power
	dissi					

- 11. (a) Derive expressions for current and impedance when an alternating e.m.f. is applied to a circuit having capacitor, inductor and resistor in series.
 - (b) Define magnetomotive force and reluctance in a magnetic circuit.
- 12. (a) Derive an expression for the moment of inertia of a rigid body about an axis having direction cosines l, m, n.
 - (b) What is a compound pendulum? Find the condition of minimum time period of a compound pendulum.1+2
 - (c) A planet of mass M moves around the sun along an ellipse so that its minimum distance from the sun is equal to r and maximum distance is R. Using Kepler's laws, prove

that the period of revolution around the sun is

$$T = \pi \sqrt{\frac{(r+R)^3}{2GM}} \ .$$

GROUP - C

Answer any five questions:

13. Consider the motion of two masses M_1 and M_2 . Show that the kinetic energy of the particles in the centre of mass frame is equal to

$$\frac{1}{2}\left(\frac{m_1m_2}{m_1+m_2}\right)\dot{r}^2$$

where \vec{r} is the relative position vector of the two masses.

- 14. Show that the path of a planet in a gravitational force field is an ellipse.
- 15. Obtain the radial and transverse components of

 4×5

velocities and acceleration of a particle moving in a plane with the polar coordinates $r = A \sin Bt$ and $\theta = ct$, where A, B and C are constants.

4

16. An ideal gas (diatomic) expands adiabatically so that its volume is doubled. How many times will the number of collisions per second of moles decrease?

4

17. What is physical significance of 'entropy' of a system? Deduce an expression for the change in entropy of one gm-mol of a perfect gas when the temperature changes from T_1 to T_2 and volume changes from V_1 to V_2 . 1+3

18. Show that at critical temperature, the departure of van der Waal's gas laws from the perfect gas is 62.5%.

4

19. (a) A plane electromagnetic wave with B field amplitude $3 \times 10^{-6} T$ travelling in vacuum falls on a surface and is totally reflected. Calculate the pressure exerted on the surface. 2

(Continued)

(b) What do you mean by retarded potential?

20. A dipole of moment *p* is placed with its axis vertical at a distance 'd' from an infinite conducting horizontal grounded plane. Calculate the force exerted on the plane by the dipole with proper explanation.