M.Sc. 2nd Semester Examination, 2012 COMPUTER SCIENCE

PAPER-COS-202

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

(Theory of Computation)

MODULE - 1

[Marks : 25]

Answer any two questions

1. (a) Construct a deterministic finite automaton accepting the set of all strings over {a, b} ending with bba.

- (b) Differentiate between Mealy machine and Moore machine.
- (c) Construct a grammar G that will generate the following language L over $\{a, b\}$:

$$L(G) = \{a^n b^n c^i \mid n \ge 1, i \ge 0\}.$$
 $3 + 3 + 4$

- 2. (a) Prove that the language $L = \{a^p / P \text{ is prime}\}$ is not regular.
 - (b) Construct NFA equivalent to the following R.E 10 + (0 + 11) 0 * 1 5 + 5
- 3. (a) Show that the following grammar is ambiguous:

$$S \rightarrow a|abSb|aAb$$

 $A \rightarrow bS|aAAb$

- (b) Convert the grammar $S \rightarrow AB$, $A \rightarrow BS \mid b$, $B \rightarrow SA \mid a$ into Greibach normal form. 4+6
- 4. (a) Consider the grammar G whose productions are $S \to aS \mid AB$, $A \to \Lambda$, $B \to \Lambda$, $D \to b$. Construct a grammar G_1 without null (Λ) productions generating $L(G) \{\Lambda\}$.

(b) Construct a push down automaton accepting $L = \{a^n b^{2n} | n \ge 1\}$ over $\{a, b\}$. 4+6

[Internal Assessment: 5 Marks]

(Compiler Design)

MODULE - 2

[Marks : 25]

Answer any two questions

- 1. (a) Convert $r = (a \mid b)^*$ bba regular expression directly to DFA using nullable, firstpos, lastpos and follow pos function.
 - (b) "No left-recursive or ambiguous grammar can be LL(1)" Justify. 8 + 2
- 2. (a) Why LR parser is good and attractive?
 - (b) Show that the following grammar

$$S \rightarrow SA \mid A$$

 $A \rightarrow a$

is SLR(1) but not LL(1).

(c) The shrink process of LALR may introduce reduce / reduce conflict. — Explain with example.

3 + 4 + 3

- 3. (a) Explain Basic Block and flow graph.
 - (b) Consider the three address code below:
 - (0) PROD = 0
 - (1) I = 1
 - (2) $T_1 = 4 * I$
 - (3) $T_2 = addr(A) 4$
 - (4) $T_3 = addr(B) 4$
 - (5) $T_s = T_A[T_1]$
 - (6) $T_6 = T_3 * T_5$
 - (7) $PROD = PROD + T_6$
 - (8) I = I + 1
 - (9) If $i \le 20$ go to (3)
 - (i) Find the basic block and flow graph of above sequence.
 - (ii) Optimize the code sequence by applying function preserving transformation and optimization techniques. 2+8

- 4. Write short notes on the following (any two):
- 5×2

- (i) Handle and viable prefixes
- (ii) Syntax analysis
- (iii) Three address code
- (iv) Basic blocks and flow graphs.

[Internal Assessment: 5 Marks]