2015

MCA

1st Semester Examination PROBABILITY & STATISTICS

PAPER-MCA-105

Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

		Answer any one out of two questions: $1 \times$	15				
1.	(a)	What do you mean by Conditional Probability?	3				
	(b)	State and Prove theorem of total probability.	7				
	(c)	State the limitation of Probability.	2				
	(d)	i) Two unbiased die are thrown. What is the pro- that the sum of top faces is 9. And product faces is 12.					

(b) State and prove different properties of distribution

(c) What do you mean by Indicator random variable?

2

10

(Continued)

2. (a) Define Cumulative Distribution function.

function.

C/16/MCA/1st Seme./MCA-105

	Group—B	
	Answer any six questions:	6×5
з.	A point P is chosen at random on a line segment A	B of
	length 21. Find the expected value of (i) AP-PB	and
	(ii) max {AP, PB}.	3+2
4.	If X is uniformly distributed in the interval $(-1, 1)$, find the distribution of $ x $.	then 5
	What do you mean by probability mass function probability density function?	and 5
6.	Define 'Coefficient of Variation'. What are the special of this measures?	uses 5
7 .	Find Mean and Variance of Poisson distribution.	5
8.	If X, Y are two random variables defined on S $Z = X + Y$ then $E(Z) = E(X) + E(Y)$.	and
9.	Show that $-1 \le r_{xy} \le 1$.	5

10.	(a)	Prove th					x ₁ , x ₂	<u>,</u> ,,	x _n fro		
	,	their me	an x	is eq	ual to	zero.				3	
	(b)	Define Harmonic mean.									
11.	(a)	What is	movii	ng ave	rage?						
	•	Obtain tabulate			moving	avera	ige of	the fo	ollowi	ng 6	
		Year	1980	1981	1982	1983	1984	1985	1986]	
		No. of students	129	131	106	91	95	84	93		
•		Fit a str following	_		4	6	7	9	- y -	6	
		\overline{z}	1	8	17	34	52	78	•		
	(c)	Describe	meth	3		· main and	· •		an Say	3	
				Gr	oup—C	}					
			Answ	er any	one c	questio	n :		1×1	15	
12.	(a)	What do you mean by regression?								2	
	(b)	Distingu regressi		etweer	n simp	le regr	ession	and i	multip	ol 2	
	(c)	Establis					equat	ion of	Y on	7	

(d) Prove that the correlation coefficient does not depend on the origin or scale of the observations. 4 Answer any one question out of two:

 1×10

13. A sample analysis of examination results of 200 MCA's was made. It was found that 46 students had failed, 68 secured a third division, 62 secured a second division and the rest were placed in first division. Are these figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for the various categories respectively.

[Given: $\chi^2_{.05, 3} = 7.815$]

- 14. (a) If T is an unbiased estimate of a population parameter θ , then show that T^2 is an unbiased estimate of θ^2 and T^2 is also consistent estimate of θ^2 . 3+2
 - (b) Find the Confidence interval of the sample mean by taking a sample of size n drawn from a normal (m, σ) population where σ is known.

Internal Assessment: 30