2019

PG

2nd Semester Examination

PHYSICS

Paper - PHS 203

Full Marks: 20

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - 203.1

(Analog Electronics - II)

- 1. Attempt any two of the followings:- 2×2=4
 - (a) The characteristic impedance of a co-axial cable is 75Ω . It is terminated by an impedance of $(25-j75)\Omega$. Calanlate the reflection coefficient at the receiving end.

- (b) State an explain Foster's reactance theorem.
- (c) Find the characteristic impedance of the following π network

- (d) Which device is more sensitive A photo diode or a photo transistor? Why?
- 2. Attempt any two of the followings: $4\times2=8$
 - (a) Convert the following T network into its equivalent π from with derivation of the different formulae used in this conversion.

- (b) Explain the origin of distortions in a transmission line and hence find the condition for development of a distortionless transmission line.
- (c) Define iterative impedance and image impedance pair for a 4-terminal network and find out their expressions for a T-network.
- (d) Draw the cross-sectional diagram of an SCR with its circuit symbol. Explain how an SCR can be used as a controlled rectifier with proper circuit diagram and relevant waveforms of the signals.
- 3. Attempt any one of the followings:- 8×1=8
- (a) (i) Draw the circuit diagram of a T-type constant k band pass filter and derive the expressions for
 its cut-off frequencies. Also show that the
 resonant frequency of any arm (ω_o) is equal to
 the geometric mean of its two cut-off frequencies
 (ω_L & ω_H).
 - (ii) Find the expressions for α and β (usual meanings) in the pass band and attenuation band of this filter.

(b) Derive Telegrapher's equations for transmission of electromagnetic signal through a transmission line and solve these to show that the general expression for voltage at any point along the transmission line is a superposition of infinite number of forward and backward moving waves.

Group - 203.2

(Digital Electronics - II)

Answer Q. No. 1 and 2 and any one from the rest.

- 1. Answer any *two* of the followings: $2 \times 2 = 4$
 - (a) In a 6 bit DAC the full scale deflection is 32V. What is the value for 110011 input?
 - (b) How many numbers can be stored in 4 bit signed binary number system? Write the highest number in this system.
 - (c) Give example of double byte and triple byte memories in 8085 μp
 - (d) Design a 4:1 Mux using 2:1 Mux only.

2. Answer any two of the followings:-

 $2 \times 4 = 8$

- (a) What is sampling theorem? Show that if sampling rate is maintained then the signal can be reconstructed.
- (b) Give the meaning of the following instructions. Find also the value of 'A' after execution of the program

MVI A 27 XRI B1 HLT

- (c) Explain the operation of 3 bit R-2R ladder type DAC.
- (d) Expand the memory capacity of (16×4) to (64×8) .
- 3. (a) Write a short note on PROM.
 - (b) Schematically explain the structure of A.L.U.
 - (c) What is dynamic RAM?

3+3+2

4. (a) In digital communication what do you mean by quantization error?

- (b) Explain the idea of 'carry look ahead' type full adder.
- (c) Discuss the different type registers available in $8085~\mu P$. 2+3+3