M.Sc. 3rd Semester Examination, 2019

PHYSICS

PAPER -PHS-303

Full Marks: 40

Time: 2 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PHS-303 A

(Solid State Physics-I)

1. Answer any four bits:

 2×4

(a) Why lattice defects are inevitable in Solid?

- (b) Explain how dislocation promotes slip in crystal?
- (c) What is polarisation catastrophe?
- (d) Explain what is meant by Ultraquantum region?
- (e) What is meant by effective mass and what negative effective mass correspons to?
- (f) Explain what is meant by polaron.
- (g) What is F-center? How it is formed?
- (h) Show that effective number of electron is minimum where band is half filled?

2. Answer any four bits:

 4×4

(a) The conduction band structure and valence band structure of a solid is given by $E_{cb} = E_1 - E_2$ corka and $E_{vb} = E_2 - E_2 \sin^{-2} \frac{ka}{2}$. Find nature of the band gap, band gap value, band width of conduction band and valence band.

- (b) Find an expression of Frenkel defect in an ionic crystal.
- (c) Find an expression of plasma oscillation frequency assuming electromagnetic wave falling in a metal.
- (d) Show how polarization direction changes in BaTiO₃ crystal as use lower the temperature and find an expression of $\frac{\Delta a}{a}$, where a is lattice constant?
- (e) Explain what is meant by luminescence? Clearly distinguish luminescent and nonluminescent solid.
- (f) Clearly explain ionic polarisation and hence find an expression of dielectric constant when an A. C. field in applied.
- (g) Show that ideal critical shear stress in a solid is of the order of $\frac{1}{6}$ th of the shear modulus.

(h) What is Mott Metal-Insulator transition? What is meant by soft optical phonon mode?

3. Answer any two bits:

 8×2

- (a) Find an expression of conductivity in an ionic crystal and hence find the Einstein relation?
- (b) Explain what is meant by electrostatic screening and hence find an expression of Thomas Fermi Screening length for a metal.
- (c) Show in details the characteristics of transition assuming a Ferroelectric solid BaTiO₃.
- (d) Explain what is meant by De haas Van Alphen Effect and find an expression of period of oscillation of mean energy of electrons near the fermi surface.

PHS-303 B.1

(Applied Analogy Electronics-I)

- 1. Answer any two of the following:
 - (a) Draw the circuit diagram of a crystal oscillator and explain its advantage over a simple LC tuned oscillator.
 - (b) Write the advantages of SMPS over series regulated power supply.
 - (c) Why a log amplifier using matched pair of transistors is unsuitable for use with very high and very low input voltages?
 - (d) Explain how an analog multiplier can be designed using log and antilog amplifiers.
- 2. Attempt any two of the following: 4×2
 - (a) What is the advantage of using chopper stabilized amplifier over a simple op-amp amplifier? Explain the operation of a chopper stabilized amplifier.

 2×2

- (b) Draw the circuit diagram of a regulated power supply using op-amp as comparator, a power trasistor as pass element and a transistor as current limiter. Explain its operation and derive the expression for its output voltage.
- (c) Draw the circuit diagram of a peak detector, using op-amp and explain its operation.
- (d) Draw the circuit diagram of a Schmitt Trigger using op-amp and explain its operation with derivation of the expression for hysteresis voltage.
- 3. Attempt any *one* of the following: 8×1
 - (a) (i) Draw the circuit diagram of a voltage controlled oscillator using modified version of Schmitt Trigger and derive the expression for its output frequency in terms of the input voltage. 1+4
 - (ii) Draw the block diagram of a phase Locked Loop and explain how it can be used to recover the modulating signal from FM modulated signal?

3

(b) (i) Draw the circuit diagram of a 2nd order low pass Butterworth Active Filter and derive the expression for its transfer function. Find out the condition for which it will behave as a 2nd order Butterworth Filter. 1+3+1

(ii) Draw the circuit diagram of a bridge power amplifier using audio IC chips LM380 and explain how it can deliver 4 times the output power compared to a single power amplifier IC.

PHS-303 B.2

(Applied Digital Electronics-I)

Answer Q. No. 4 & 5 and any one from the rest

4. Answer any two questions:

 2×2

3

- (a) What is wire'd logic? Give example.
- (b) Give the circuit of 2 bit CMOS OR gate.

(c) Give the circuit to solve the following digital equation by 8:1 Mux IC

$$Y = \sum_{m} (0, 3, 7)$$

(d) Compare the 'fan out' and 'noise immunity' of TTL and ECL gates.

5. Answer any two questions:

 4×2

- (a) What is MTSO in mobile communication? What do you mean by topology in computer communication?
- (b) Design a ROM unit by FPLA circuit which can convert 3 bit binary number into 3 bit grey code number.
- (c) Explain the operation of 2 input ECL OR/ NOR gate and discuss the merits and demerits of this gate.
- (d) Design the following circuit with DTL gates

$$Y = \overline{(ABC)}$$

What is the limitation of this circuit?

- 6. (a) Give the circuit of two phase ratio-less dynamic shift register.
 - (b) Explain the charge transfer in three phase CCD.
 - (c) Differentiate SRAM and DRAM. 3+3+2
 - 7. (a) Give the basic idea of mobile communication with a schematic diagram.
 - (b) Give the circuit of 3-bit AND gate designed with NMOS technology.
 - (c) Give the block diagram of 1:24 De Mux IC designed by cascading three 1:8 De Mux ICs.

 3+3+2