M.Sc. 3rd Semester Examination, 2019

PHYSICS

PAPER -- PHS-301.1 & 301.2

Full Marks: 40

Time: 2 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PHS-301.1

(Quantum Mechanics-III)

[Marks : 20]

1. Answer any two:

 2×2

(a) Discuss the scattering from a black disk of high energies.

(b) Given the scattering amplitude

$$f(\theta) = \frac{1}{2i\kappa} \sum_{l} (2l+1) \left[e^{2i\delta} l - 1 \right] P_l(\cos \theta).$$

show that

$$\operatorname{Im} f(0) = \kappa \sigma_{t} / 4\pi.$$

(c) A system of 2 identical bosons, each of mass 'm' is placed in a 1-D box of length 'L'. Both particles are in same spin state. The energy of the system is

$$\frac{5\pi^2\hbar^2}{2mL^2}.$$

What is the space part of the wave function?

(d) Distinguish between adiabatic and sudden approximation in perturbation theory.

2. Answer any two:

 4×2

(a) Assuming that the charge distribution in a nucleus is Gaussian.

$$\frac{\overline{e}^{r^2/b^2}}{\pi^{3/2}b^3}$$

then show that the form factor is also Gaussian and the mean square radius is $\frac{3b^2}{2}$.

- (b) Distinguish between Hartree and Hartree-Fock approximation. State Koopman's theorem.
- (c) Find the elastic and total-cross-section for a black sphere of radius 'R'.
- (d) At what neutron lab energy will p-wave be important in n-p scattering? (Impact parameter = 2 fm).
- 3. Answer any one:

 8×1

(a) In the Born approximation, calculate the scattering amplitude for scattering from the square well potential $V(r) = -V_0$ for $0 < r < r_0$

and V(r) = 0 for $r > r_0$. If the geometrical radius of the scatterer is much less than the wavelength associated with the incident particles, show that the scattering will be isotropic. 5+3

(b) Consider a two-level system with $E_1 < E_2$. There is a time-dependent potential that connects the two levels as follows:

$$V_{11} = 0$$
, $V_{22} = 0$, $V_{12} = \gamma e^{iwt}$, $V_{21} = \gamma e^{-iwt}$
 $(\gamma = \text{real})$ at $t = 0$, $G(0) = 1$, $C_2(0) = 0$.

Prove that near resonance

$$\left| \frac{(i)}{C_2(t)} \right|^2 = \frac{4\gamma^2}{\hbar^2 (w - w_0)^2} \sin^2 \frac{(w - w_0)}{2} t$$

where
$$w_0 = (E_2 - E_1)/\hbar$$
.

8

PHS-301.2

(Statistical Mechanics-I)

[Marks: 20]

4. Answer any two:

 2×2

(a) N particles each of mass m confined to a box has energy eigenfunctions

$$\psi_{\kappa}(x) = \sqrt{\frac{2}{L}} \sin \kappa x.$$

Calculate the number of distinct states $\Omega(E, N, V)$ with energy E.

- (b) A one-dimensional random walker takes steps to left or right with equal probability. Find the probability that the random walker starting from origin is back to origin after N even number of steps.
- (c) If the Hamiltonian

$$\hat{H} = -\mu_B B \hat{\sigma}_x$$

for a spin $\frac{1}{2}$ particle, then calculate $\langle \sigma_x \rangle$.

(d) If the canonical partition function

$$Q = \sum_{n} \overline{e}^{\beta E_{n}}$$

Evaluate $\langle E^2 \rangle$ interms of Q.

5. Answer any two:

 4×2

- (a) A photon gas is at thermal equilibrium at temperature T. Calculate the mean number of photons in an energy state $\varepsilon = \hbar w$.
- (b) If the probability of alignment of a spin $\frac{1}{2}$ particle in the upward direction is p. Find the entropy S of a system of N spins. Find the value of p at which the entropy is maximum.
- (c) Calculate the expression of grand potential for N quantum harmonic oscillator in one dimension.
- (d) If the density matrix in co-ordinate representation

$$\rho_{rr'} = \frac{1}{V} \exp \left[\frac{-m}{2\beta \hbar^2} \left| \vec{r} - \vec{r}' \right|^2 \right]$$

for a harmonic oscillator. Prove that

$$\langle H \rangle = \frac{3}{2} \kappa_B T.$$

6. Answer any one:

 8×1

- (a) Consider a system of N particles, each of mass m, enclosed in an infinitely long cylindrical container in a uniform gravitational field. The system is in thermal equilibrium.
 Obtain expressions for the
 - (i) Classical partition function
 - (ii) entropy of the system
 - (iii) Internal energy
 - (iv) Specific heat of the system. 4+2+1+1
- (b) (i) If $\hat{\rho}_1$ and $\hat{\rho}_2$ be a pair of density matrices then show that

$$\hat{\rho} = r \,\hat{\rho}_1 + (1 - r) \,\hat{\rho}_2$$

is a density matrix for all real numbers r such that $0 \le r \le 1$.

(ii) For a spin 1 particle, single particle Hamiltonian

$$\hat{H} = -\mu_0 B \hat{\sigma} + \Delta \left(1 - \sigma^2\right)$$

where $\sigma = \pm 1$ if there is spin. = 0 if vacancy exists.

and Δ = vacancy formation energy.

Prove that magnetization

$$m = \frac{2\mu_0 \sin h \left(\frac{\mu_0 B}{\kappa_B T}\right)}{e^{-\frac{\Delta}{\kappa_B T}} + 2\cos h \left(\frac{\mu_0 B}{\kappa_B T}\right)}.$$