Total Page - 6

PG/2nd Sem/PHS/19 (Old)

2019

PG

2nd Semester Examination

PHYSICS

Paper - PHS 201

[Old Syllabus]

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

PHS - 201 (A)

(Quantum Mechanics - II)

(Marks: 20)

Answer Q. No. 1 & 2 and any one from the rest.

 $4 \times 2 = 8$

1. Answer any three bits:

 $2 \times 3 = 6$

(a) If
$$\hat{p}_r = -i\hbar \left(\frac{\partial}{\partial r} + \frac{1}{r} \right)$$

[Turn Over]

prove that

$$\frac{p^2}{2m} = \frac{p^2_r}{2m} + \frac{L^2}{2mr^2}$$

- (b) If $\hat{H}_D = c\hat{\alpha}.\hat{p}_z + \beta mc^2 + V(z)$ be the one dimentional Dirac Hamiltonian, then prove that $\left[\hat{\sigma}, \hat{H}_D\right] = 0$.
- (c) A spin $\frac{1}{2}$ particle is in the state $\frac{1}{\sqrt{6}}(1+i)$.

 What is the probability of getting $\frac{\hbar}{2}$ when be measure S_r ?
- (d) $S_r = \frac{\vec{S} \cdot \vec{r}}{r}$ is the component of electron spin in the direction of \vec{r} commutes with each component of total angular momentum $\vec{J} = \vec{L} + \vec{S}$, then prove that $[\vec{S}, S_r] = i\hbar \frac{\vec{r} \times \vec{S}}{r}$.

(e) A hydrogen atom in its ground state is placed under electric field \overline{E} . Find the change in its eigen value in the second order.

$$\left[\Psi_{\circ} = \frac{1}{\sqrt{\pi a_{\circ}^{3}}} e^{-r/a_{\circ}} \right]$$

- 2. Answer any one:
 - (a) Prove that $\left[\vec{a}.\vec{L},\vec{b}.\vec{L}\right] = i\hbar \left(\vec{a} \times \vec{b}\right).\vec{L}$, $\left[\vec{a}.\vec{b}\right]$ commute with each other and with \vec{L} .
 - (b) Prove that Dirac equation in .e. field in of the form $\left[(i\partial eA)^2 \frac{e}{2} \sigma^{\mu\nu} F_{\mu\nu} m^2 \right] \psi = 0 \text{ and }$ $\sigma^{\mu\nu} = \frac{i}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right].$
- 3. (a) Prove that $\sum_{r} u_r(p) \overline{u}_r(p) = \frac{p+m}{2m}$.

and
$$\sum_{r} v_r(p) \overline{v}_r(p) = \frac{p'-m}{2m}$$

(b) Show that $p^2 = p^2$.

[Turn Over]

4. Write down Block-equation for spin and solve it a magnetic field $\bar{H} = H_{\circ}\hat{e}_z + \hat{e}_x H_1 \sin wt + \hat{e}_y H_1 \cos wt$

2+8

PHY 201 (B)

(Method of Mathematical Physics - II)

Answer Q. No. 1 & 2 and any one from the rest.

- 2×5=10
- 1. Answer any five bits:
 - (a) x' = ax + b find the generator.
 - (b) State & prove Lagrange's theorem for group.
 - (c) If a group a*b=a+b-1Find the inverse of the elements.
 - (d) Prove that $\delta(x)\delta(y) = \frac{\delta(r)}{2\pi r}$
 - (e) Define the structure constant of a Lie group with examples.
 - (f) $f(t) = \frac{2t}{3}$, $0 \le t \le 3$ Find the L.T. of f(t).

(g) If

$$\hat{T}(p)f(x,y) = f(x\cos\phi + y\sin\phi, -x\sin\phi + y\cos\phi)$$

Find the generator of this Lie group.

- (h) Find the inverse F.T. of $\delta(w)$.
- (a) Find the Green's function for the boundary value problem.

$$\frac{d^2y}{dx^2} + k^2x = f(x)$$

$$y(0)=0$$

$$y(1) = 0$$

(b) Solve

$$y(x) - \int_{b}^{1} (2x - t) y(t) dt = \cos 2\pi x$$
. 5+5

3. (a) Solve

$$4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 16\log(x + 2y)$$

[Turn Over]

(b) For group T_d, charater table for reducible representation is

Find the number of irreducible representation in T_d and show that $T_r = A_1 \oplus T_2$. 5+5