M.Sc 2nd Semester Examination, 2011

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Continuum Mechanics)

PAPER — MTM - 204

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any four from the rest

The figures in the right-hand margin indicate marks

1. Answer any two questions:

- 4x2
- (a) Show that the difference of the values of a two dimensional stream function at the two points represents the flux of a fluid across any curve joining the points?
- (b) Deduce the constitutive equation of a perfect fluid.
- (c) For the displacement field $u_1 = X_1^2 X_2$, $u_2 = X_2 X_3^2$, $u_3 = X_2^2 X_3$, determine the unit relative displacement vector at P(1, 2, -1) with respect to Q(4, 2, 3).

(Turn Over)

2. Show that the velocity field $u(x, y) = \frac{B(x^2 - y^2)}{(x^2 + y^2)^2}$, $v(x, y) = \frac{2Bxy}{(x^2 + y^2)^2}$ and w = 0, satisfies the

Euler equation of motion in the absence of external forces for an inviscid incompressible flow. Also determine the pressure associated with this velocity field where B is constant.

8

State and prove Kelvin's Circulation theorem for a perfect fluid. Hence show that the fluid motion of once irrotational is always irrotational.

8

4. Define principal strains and principal directions of strain. Prove that all principal strains are real and principal directions of strain corresponding to the distinct principal strains are orthogonal.

8

5. (a) Show that in two dimensional irrotational motion, stream function satisfies Laplace's equation.

_

(b) Define doublet and find the complex potential for a doublet. 1+2

(c) Stress tensors at a point are given in appropriate units by

$$t_{ij} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 4 & 0 \\ 2 & 0 & 2 \end{bmatrix}.$$

Find the stress vector at a point P on the plane through P parallel to the plane $2x_1 - 2x_2 - x_3 = 0$.

6. (a) Find the stream line and path line of a fluid motion for the velocity field:

$$v_1 = \frac{x_1}{1+t}$$
, $v_2 = x_2$, $v_3 = 0$.

(b) Prove that:

$$\frac{x_1^2}{a_1^2 k^2 t^4} + k t^2 \left(\frac{x_2^2}{a_2^2} + \frac{x_3^2}{a_3^2} \right) = 1$$

is a possible form of the boundary surface of the liquid.

7. (a) Find the change in volume due to strain deformation.

3

3

5

5

4)

(b) Write down the stress invariants and why these are called invariant?

[Internal Assessment — 10 Marks]