Total Pages-2 PG/IS/A.MATH/MA - 1106/09

M.Sc 1st Semester Examination, 2009

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Graph Theory)

PAPER -- MA - 1106

Full Marks: 25

Time: 1 hour

Answer all questions

The figures in the right-hand margin indicate marks

1. Answer any two questions:

2 x 2

- (a) Number of odd degree vertices of a graph is even. Justify.
- (b) Prove that every bipartite graph is 2-chromatic.
- (c) Prove that vertex connectivity of a graph can never exceed its edge connectivity.

2. Answer any four questions:

- 4 x 4
- (a) Show that a tree with n vertices has n-1 edges.
- (b) Define a binary tree. Obtain the number of pendant vertices in a binary tree.
- (c) Prove that max vertex connectivity of a graph is $\left[\frac{2e}{n}\right]$, where n, e are no. of vertices and edges of a graph respectively.
- (d) Define chromatic polynomial of a graph. Show that the chromatic polynomial of a tree with n vertices is given by $t(t-1)^{n-1}$.
- (e) If a graph G has incidence matrix B and cycle matrix C, then show that

$$CB^{T} = 0 \pmod{2}$$
.

(f) Prove that in a nonseparable graph G, the set of edges incident on each vertex of G is a cutset.

[Internal Assessment — 5 Marks]