2017

OLD

Part-II 3-Tier ELECTRONICS

(General)

PAPER-III

(PRACTICAL)

Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full Marks.

Group-A

(Semiconductor Devices and Circuits)

Answer any one question.

- 1. Study the forward 1-V characteristics of a PN junction on diode. Implement the circuit on a bread board. Calculate the value of cut-in voltage, material constant and reverse saturation current from the forward I-V curve.
- 2. Study the reverse I-V characteristics of a P-N junction diode. Specify break region and break down voltage. Calculate dynamic ressistance from rhe reverse I-V characteristics.

- 3. Design a voltage regulator circuit using a zener diode. Apply line voltage 5 to 8 volt to achieve regulated voltage output of 5.6 V. Draw the line regulation curve.
- 4. Study the load regulation characteristics of a zener diode. Assume zener break down voltage to be 5.6 V. Draw the load regulation curve of your circuit and calculate % regulation
- 5. Construct a half-wave rectifier circuit using a P-N junction diode. Apply a sine wave at the input and observe the output and input in a CRO. Increase input frequency and observe the output.
- 6. Construct a full wave bridge rectifier circuit in a bread board using four P-N junction diodes and required resistances. Apply a sine wave at the input and study its wave form at the output using a CRO.
- 7. Design a circuit on a bread board to study the input characteristics of a N-P-N transistor operating under CE mode for two V_{CE} value. Calculate h_{ie} from your input characteristics curve.
- 8. Draw the output characteristics curve of a N-P-N transistor operating under CE mode for different I_B value. Specify cut-off, Linear and saturation region in the output characteristics. Calculate h_{fe} from your curve.

Group-B

(Instrumentation and Digital Electronics)

Answer any one question.

- 9. Construct an astable-multivibrator with 555 timer IC for a given frequency. Study the output waveform using a Cathode-ray-oscilloscope and measure its duty cycle.
- 10. Design a circuit for off-set wall adjustment of an operational of amplifier IC 741 for different feed back resistence. Measure the output offset voltage for each case.
- 11. Study the input-out put characteristics of a non-inverting amplifier for a gain of 2. Apply a sine wave to this circuit. Increase the frequency of the sine wave and calculate voltage gain. Draw gain vs frequency plot.
- 12. Construct a differentiator circuit using an OP-AMP. Apply a traingular wave to this circuit and observe the output in a CRO.
- Realize an X-OR gate using minimum no of NOR gates.
 Verify the truth table.
- 14. Construct a J-K flip flop using NAND gates only and verify its truth tasle.
- 15. Construct a half-adder circuit using NAND gates only and verify its truth table.

16. Implement the function $F = (A + \overline{B}\overline{C})(\overline{B} + CA)$ in a bread board and verify its truth table.

Marks Distribution

Group A Experiment : 35

(Theory: 05; circuit: 05; Expt: 20; Discussion: 05)

Group B Experiment : 35

(Theory: 05; circuit: 05; Expt: 20; Discussion: 05)

Viva-Voce (10+10) : 20

Laboratory Note Book (5+5): 10

Total : 100