PER NEW 10 YOURS AND AND WORLD

2017

M.Sc. Part-I Examination

CHEMISTRY

PAPER-II

Full Marks: 100

Time: 4 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Organic)

Answer any five questions, taking at least two from Group-A and B and one from Group-C.

Group-A

 (a) Cite an example to explain the exception of Woodward Hoffmann selection rule from electrocyclic reactions.

 $2\frac{1}{2}$

(b) Predict the product(s) of the following reactions showing frontier orbital interaction. (attempt any four)

(i)
$$\longrightarrow$$
 ?

(ii)
$$H \xrightarrow{126^{\circ}C}$$
?

(iv)
$$A \longrightarrow P$$
 $A \longrightarrow P$ $A \longrightarrow P$ $A \longrightarrow P$

(c) Explain the term secondary orbital interaction with special reference to the Diels Alder reaction.

 $2\frac{1}{2}$

(d) Identify the product X and Y.

- 2. (a) State the principle of 'Microscopic Reversibility'
 whether is it applicable or not to an electrocyclic
 reaction? Explain.
 - (b) Explain the product(s) of the following reactions (attempt any six):

(ii)
$$+ CO_2Me \xrightarrow{\Delta}$$

(iii) Me
$$\stackrel{\Delta}{\longrightarrow}$$

(iv)
$$\frac{hv}{Me} \xrightarrow{hv}$$
?

(v)
$$H \xrightarrow{C_4 H_9} \xrightarrow{\Delta} ?$$

(viii)
$$2 \longrightarrow ?$$
 6×2

3. (a) Construct a correlation diagram for the following transformations:

With the help of the diagram predict whether these transformations are allowed thermally or photochemically? Do you arrive the same conclusions using PMO method.

3+2+2

(b) The following transformation gives the product as follows:

Explain whether $A \rightarrow B$ and $B \rightarrow C$ follow Woodward-Hoffmann Rule and reverse reaction $C \rightarrow B$ is at all possible. Indicate mechanism and show frontier orbital interactions for each steps whenever necessary. Comment or 'Principle of microscopic reversibility' for the above transformation. 7+1

4. (a) Give the retrosynthetic approach and their synthetic strategies of the following compounds (any four):

(b) Define with example (i) Disconnection and synthon. $1\frac{1}{2}+1\frac{1}{2}$

5. (a) Carry out the following transformations with mechanism: (any two)

3x2

(b) Predict the product(s) with mechanism: 3x3 (any three)

(i) LiAlH₄
$$\rightarrow$$
 ?

(ii)
$$Me \xrightarrow{Sia_2BH}$$
?

(v)
$$OH \longrightarrow PCC \longrightarrow P$$

Group-B

6. (a) Identify A, B, C and D.

(i)
$$HO \longrightarrow A \xrightarrow{I_2} A \xrightarrow{BU_3SnH} B$$

(ii)
$$CH_3$$
 CH_2 CH_3 CH_3 CH_3

(b) Indicate appropriate reagent in each case:
(any three)

$$(i) \qquad \qquad \bigcap^{\frac{n}{2}} CN$$

(iv)
$$CO_2Me \longrightarrow CO_2Me$$
 oths

- (c) Explain the following observations:
 - (i) Reduction of benzene with sodium in liquid ammonia produces non-conjugated 1, 4-cyclohexadiene.
 - (ii) (EtO)₂P CH COOEt reacts with cyclohexanone

to give 70% yield but (EtO)₃P - CH - COOEt gives

25% yield.

(d) Write down the structure of the major product

(ii)
$$\frac{\text{(i) PhCO}_2\text{Ag / I}_2\text{ (1 equiv.)}}{\text{(ii) KOH/H}_2\text{O}}?$$

1×2

- 7. (a) Show that owing to delocatization benzene is stabilised an amount of energy is equal to 2β .
 - (b) Define Homoaromaticity. With an example.
 - (c) Account for the instability of [10] annulene, although it obey Huckel's rule.
 - (d) Arrange the stability order with proper explanation

(e) [18] annulene is more stable then [18] annulene dianion. Explain with M.O. diagram.

4+3+2+3+3

2+2

- 8. (a) Define Nucleotide and nucleoside.
 - (b) Give chemical evidences for the following point:
 N-methyl pyrrolidine group attached at position 2(α) to the pyridine nucleus in nicotine.
 - (c) Discuss the mechanism of hydramine fission of ephedrine. What happens when ephedrine subjected to Hofmann exhaustive methylation?

 3+2

- (d) Give example sesquiterpene.
- (e) Predict the product with mechanism

 Glutaraldehyde + Ammonia + N-methyl

 pyrolinium chloride

- 9. (a) A compound A, C_8H_6 , showed ¹H NMR signals at $\delta_{7.2}$ (5H, m) and $\delta_{3.08}$ (1H, S). Identify the compound.
 - (b) How would you distinguish between the following isomeric compound using the Karplus equation:

(c) Distinguish the following compounds with explanation:

14

- (d) Compound C6H10O2 characterised by 1H NMR spectram which contains $\delta_{2,2}$ (6H, S) and $\delta_{2,7}$ (4H, S) peak. Identify the compound.
- (e) Compound C₆H₁₂O shows in its ¹H NMR spectrum two signals at $\delta_{1.1}$ (9H) and 2.1 (3H) both as singlets. Identify the compounds.

$$2\frac{1}{2}+2\frac{1}{2}+(2\frac{1}{2}\times 2)+2+2\frac{1}{2}$$

Or

- (a) Write all the stereo isomers of tetra-sec-butylmethane. Discuss about the symmetry and chirility of each of them. 5
- (b) What is atropisomerism? Explain with examples.

(c) Predict the product(s) with mechanism

- (i) cis-2-aminocyclohexanol
- (ii) trans-2-amino cyclohexanol

- (d) State whether the following statement are true or false. Give reasons.
 - (i) A meso isomer is an achiral diaste reomer.
 - (ii) Rigid molecules that belong to Cn and Dn point group cannot have enantiotopic ligands.

2+2

Synthesize the following compounds retrosynthetic analysis (any three) :

3

- (b) Explain the following:

 Pyrrole undergoes electrophilic substitution at 2 position.
- (c) Carry out the following transformations:

 (any two)

(i)
$$N - CH_2 - CH_2 - N$$

(iii) Me Me
$$\longrightarrow$$
 CH₃ 2×2

Group-C

11. (a) Predict the product with mechanism for the following reactions: (any three)

(ii)
$$+ Cl \xrightarrow{PPh_3} Ph \longrightarrow ?$$

$$Cl \xrightarrow{PPh_3} Ph \longrightarrow ?$$

$$Cl \xrightarrow{PPh_3} Ph \longrightarrow ?$$

(iv)
$$CH_3 \xrightarrow{NH_3/NH_4Cl}$$
? 3×3

Sealed tube at higher temp.

(b) Write down the product structure with mechanism squalene $\xrightarrow{\text{squalene}}$ squalene oxide $\xrightarrow{\text{H}^+}$ protosterol cation $\xrightarrow{-\text{H}^+}$ Lenosterol.

(c) Write down the product structure of the following reactions:

(Continued)

(d) Define Hückel's rule. What are the limitation of Hückel's rule.

Or

Why the $(4\eta + 2)\pi$ electron system to behave as aromatic compound.

(e) The important IR bands for a compound, C₃H₃N are found at ν_{max}(cm⁻¹): 3050(m), 2250(s), 1620(m), 990(s). Deduce structure of the compound.

01

Compound A, $C_{12}H_{18}$ is characterised by ¹H NMR spectrum which contain a single peak at $\delta_{2,2}$. Identify the compound.

(i) What is buttressing effect? Discuss with an example.

(ii)
$$A_cO$$
 OA_c
 OA

Indicate the stereo chemistry of the product(s).

lesions and ris and Works Thanks and the limited the

Write down the products of the following reactions;