Journal of Physical Sciences, Vol. 22, 2017, 99-106 ISSN: 2350-0352 (print), <u>www.vidyasagar.ac.in/journal</u> Published on 25 December 2017

Some Features of Intuitionistic L- R₀ Spaces

Rafiqul Islam^{*} and M.S. Hossain¹

^{*}Department of mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh. ¹Department of mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh. ^{*}Email: <u>rafiqul.pust.12@gmail.com</u>

Received 15 September 2017; accepted 3 November 2017

ABSTRACT

 R_0 space in intuitionistic L-topological spaces are defined and studied in this paper. We discussed six notions of R_0 space in intuitionistic L-topological spaces and induced certain relationship among them. We also showed that all of these definitions satisfy 'hereditary' property and preserved under one-one, onto and continuous mapping.

Keywords: Intuitionistic L-fuzzy sets, Intuitionistic L-fuzzy point, Intuitionistic L-fuzzy open sets.

1. Introduction

The idea of fuzzy sets and L-fuzzy sets were initially introduced by Zadeh [16] in 1965 and Goguen [12] in 1967 respectively. After then in 1984, intuitionistic fuzzy sets were first published by Attanassov [1] and many works by the same author and his colleagues appeared in the literature [2-4]. Later, this concept was generalized to 'intuitionistic Lfuzzy sets' by Atanassov and Stoeva [5]. Here, we introduced 'intuitionistic L-topology' by using 'intuitionistic L-fuzzy sets' in the sense of Chang [6]. Moreover, we defined possible six notions, investigated some properties and features of R_0 space in intuitionistic L-topological spaces.

2. Notation and preliminaries

Through this paper, X will be a nonempty set, ϕ be the empty set, and L is a complete distributive lattice with 0 and 1. A, B, ... be intuitionistic L-fuzzy sets, t be the intuitionistic topology, τ be the intuitionistic L-topology, I = [0, 1], and the functions $\mu_A: X \to L$ and $\gamma_A: X \to L$ denote the degree of membership (namely $\mu_A(x)$) and the degree of none membership (namely $\gamma_A(x)$).

Now we recall some basic definitions and known results in intuitionistic L-fuzzy sets and intuitionistic L-topological spaces.

Definition 2.1. [16] Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a function $u: X \to I$ which assigns to each element $x \in X$, a degree of membership $u(x) \in I$.

Definition 2.2. [13] Let $f: X \to Y$ be a function and u be fuzzy set in X. Then the image f(u) is a fuzzy set in Y which membership function is defined by $(f(u))(y) = \{sup(u(x)) | f(x) = y\}$ if $f^{-1}(y) \neq \emptyset, x \in X$ (f(u))(y) = 0 if $f^{-1}(y) = \emptyset, x \in X$.

Definition 2.3.[12] Let *X* be a non-empty set and *L* be a complete distributive lattice with 0 and 1. An L-fuzzy set in *X* is a function $\alpha: X \to L$ which assigns to each element $x \in X$ a degree of membership, $\alpha(x) \in L$.

Remark 2.4. Throughout this paper we consider the complete distributive lattice $L = \{0, 0.1, 0.2, ..., 1\}$ and from the above definitions we show that every L-fuzzy set is also a fuzzy set but converse is not true in general.

Example 2.4.1. Let $X = \{a, b, c\}$ and $L = \{0, 0.1, 0.2, \dots, 1\}$. A function $\alpha: X \to L$ is defined by $\alpha(a) = 0.2, \alpha(b) = 0.5, \alpha(c) = 0$ which is L-fuzzy set and also a fuzzy set.

Example 2.4.2. Let $X = \{a, b, c\}$ and I = [0, 1]. A function $u: X \to I$ is defined by u(a) = 0.25, u(b) = 0.55, u(c) = 0 which is fuzzy set but not an L-fuzzy set because $0.25, 0.55 \notin L$.

Definition 2.5.[5] Let *X* be a non-empty set and *L* be a complete distributive lattice with 0 and 1. An intuitionistic L-fuzzy set (ILFS for short) *A* in *X* is an object having the form $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$. Where the functions $\mu_A : X \to L$ and $\gamma_A : X \to L$ denote the degree of membership (namely $\mu_A(x)$) and the degree of none membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set *A*, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Let L(X) denote the set of all intuitionistic L-fuzzy set in X.Obviously every Lfuzzy set $\mu_A(x)$ in X is an intuitionistic L-fuzzy set of the form $(\mu_A, 1 - \mu_A)$. Throughout this paper we use the simpler potention $A = (\mu_A, \mu_A)$.

Throughout this paper we use the simpler notation $A = (\mu_A, \gamma_A)$ instead of $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$.

Definition 2.6. [9] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic L-fuzzy sets in X. Then

(1) $A \subseteq B$ if and only if $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$

- (2) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (3) $A^c = (\gamma_A, \mu_A)$
- (4) $A \cap B = (\mu_A \cap \mu_B; \gamma_A \cup \gamma_B)$
- (5) $A \cup B = (\mu_A \cup \mu_B; \gamma_A \cap \gamma_B)$
- (6) $0_{\sim} = (0^{\sim}, 1^{\sim})$ and $1_{\sim} = (1^{\sim}, 0^{\sim})$.

Let f be a map from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an ILFS of X and $B = (\mu_B, \gamma_B)$ be an ILFS of Y. Then $f^{-1}(B)$ is an ILFS of X defined by $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ and f(A) is an ILFS of Y defined by $f(A) = (f(\mu_A), 1 - f(1 - \gamma_A))$.

Definition 2.7.[10] An intuitionistic topology (IT for short) on a nonempty set X is a family t of IS's in X satisfies the following axioms:

- (i) $\emptyset_{\sim}, X_{\sim} \in t$.
- (ii) If G_1 , $G_2 \in t$ then $G_1 \cap G_2 \in t$.

(iii) If $G_i \in t$ for each $i \in \Lambda$ then $\bigcup_{i \in \Lambda} G_i \in t$.

Then the pair (X, t) is called an intuitionistic topological space (ITS, for short) and the members of t are called intuitionistic open sets (IOS for short).

Definition 2.8.[11] An ITS (X, t) is called $I - T_0$ space if for all $x, y \in X, x \neq y, \exists$ an IOS $G = (A_1, A_2) \in t$ such that $x \in A_1, y \in A_2$ or $y \in A_1, x \in A_2$.

Definition 2.9.[14] Let $p, q \in L = \{0, 0.1, 0.2, ..., 1\}$ and $p + q \leq 1$. An intuitionistic L-fuzzy point (ILFP for short) $x_{(p,q)}$ of X is an ILFS of X defined by

$$x_{(p,q)}(y) = \begin{cases} (p,q) \ if \ y = x, \\ (0,1)if \ y \neq x \end{cases}$$

In this case, x is called the support of $x_{(p,q)}$ and p and q are called the value and none value of $x_{(p,q)}$, respectively. The set of all ILFP of X we denoted it by S(X).

An ILFP $x_{(p,q)}$ is said to belong to an ILFS $A = (\mu_A, \gamma_A)$ of X denoted by $x_{(p,q)} \in A$, if and only if $p \le \mu_A(x)$ and $q \ge \gamma_A(x)$ but $x_{(p,q)} \notin A$ if and only if $p \ge \mu_A(x)$ and $q \le \gamma_A(x)$.

Definition 2.10. [14] If A is an ILFS and $x_{(p,q)}$ is an ILFP then the intersection between ILFS and ILFP is defined as $x_{(p,q)} \cap A = (p \cap \mu_A(x); q \cup \gamma_A(x))$.

Definition 2.11.[14] An intuitionistic L-topology (ILT for short) on X is a family τ of ILFSs in X which satisfies the following conditions:

(i)
$$0_{\sim}, 1_{\sim} \in \tau$$
.

(ii) If A_1 , $A_2 \in \tau$ then $A_1 \cap A_2 \in \tau$.

(iii) If $A_i \in \tau$ for each $i \in \Lambda$ then $\bigcup_{i \in \Lambda} A_i \in \tau$.

Then the pair (X, τ) is called an intuitionistic L-topological space (ILTS, for short) and the members of τ are called intuitionistic L-fuzzy open sets (ILFOS for short). An intuitionistic L-fuzzy set *B* is called an intuitionistic L-fuzzy closed set (ILFC for short) if $1 - B \in \tau$.

Definition 2.12. [9] Let (X, τ) and (Y, s) be two ILTSs. Then a map $f: X \to Y$ is said to be

- (i) Continuous if $f^{-1}(B)$ is an ILFOS of X for each ILFOS B of Y, or equivalently, $f^{-1}(B)$ is an ILFCS of X for each ILFCS B of Y,
- (ii) Open if f(A) is an ILFOS of Y for each ILFOS A of X,
- (iii) Closed if f(A) is an ILFCS of Y for each ILFCS A of X,
- (iv) A homeomorphism if f is bijective, continuous and open.

Rafiqul Islam and M.S. Hossain

3. Definition and properties of intuitionistic lattice fuzzy R₀ spaces

In this section, we give sixnotions of R_0 space n intuitionistic L-topological spaces and establish some of their related theorems.

Definition 3.1. An ILTS (X, τ) is called

- (a) $IL R_0(i)$ if for all $x, y \in X, x \neq y$, whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that and $\mu_B(y) = 1, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(x) = 1$.
- (b) $IL R_0(ii)$ if for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $x_{(p,q)} \in A$, $y_{(r,s)} \notin A$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $y_{(r,s)} \in B$, $x_{(p,q)} \notin B$.
- (c) $IL R_0(iii)$ if for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$ whenever \exists ILOS $A = (\mu_A, \gamma_A)$ with $x_{(p,q)} \in A$, $y_{(r,s)} \cap A = 0_{\sim}$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $y_{(r,s)} \in B$, $x_{(p,q)} \cap B = 0_{\sim}$.
- (d) $IL R_0(iv)$ if for all $x, y \in X, x \neq y$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) > 0, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) > 0$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) > 0, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(x) > 0.$
- (e) $IL R_0(v)$ if for all $x, y \in X, x \neq y$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) > \mu_A(y); \gamma_A(y) > \gamma_A(x)$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) > \mu_B(x); \gamma_B(x) > \gamma_B(y)$.
- (f) $IL R_0(vi)$ if for all $x, y \in X, x \neq y$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) \neq \mu_A(y); \gamma_A(x) \neq \gamma_A(y)$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(x) \neq \mu_B(y); \gamma_B(x) \neq \gamma_B(y)$

Theorem 3.2. Let (X, τ) be an ILTS. Then we have the following implications:

$$IL - R_0(ii)IL - R_0(iv)$$

$$IL - R_0(i)IL - R_0(v)$$

$$IL - R_0(ii)IL - R_0(v)$$

Proof: $IL - R_0(i) \Rightarrow IL - R_0(iv) \Rightarrow IL - R_0(v) \Rightarrow IL - R_0(vi)$: Suppose (X, τ) is an $IL - R_0(i)$. Then we have by definition, if for all $x, y \in X, x \neq y$, whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) = 1, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(x) = 1$. Hence we have (1) ... $\begin{cases} \exists ILOS A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) > 0, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) > 0 \end{cases}$ (2) $\Rightarrow \begin{cases} \exists ILOS A = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) > 0, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(x) > 0 \end{cases}$ (3) ... $\Rightarrow \begin{cases} \exists ILOS A = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) > \mu_B(x); \gamma_B(x) > \gamma_B(y) > 0 \end{cases}$ (4) Hen $\exists B = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) > \mu_B(x); \gamma_B(x) > \gamma_B(y) = 0, \gamma_B(y) = 0, \gamma_B(x) = 0 \end{cases}$ (5) ... $\Rightarrow \begin{cases} \exists ILOS A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) > \mu_A(y); \gamma_A(y) > \gamma_A(x) = 0, \gamma_B(y) = 0, \gamma_B(x) = 0, \gamma_B$

 $IL - R_0(i) \Rightarrow IL - R_0(v)$ and $IL - R_0(i) \Rightarrow IL - R_0(vi)$: Suppose (X, τ) is an $IL - R_0(vi)$ $R_0(i)$. Then we have by definition, if for all $x, y \in X, x \neq y$, whenever \exists ILOS A = $(\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) = 1, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(y) = 0, \mu_A(y) = 1,$ (4) \Rightarrow $\begin{cases}
\exists ILOS A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) > \mu_A(y); \gamma_A(y) > \gamma_A(x) \\
\text{then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) > \mu_B(x); \gamma_B(x) > \gamma_B(y).
\end{cases}$ (5) ... \Rightarrow $\begin{cases}
\exists ILOS A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) \neq \mu_A(y); \gamma_A(x) \neq \gamma_A(y) \\
\text{then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(x) \neq \mu_B(y); \gamma_B(x) \neq \gamma_B(y).
\end{cases}$ From (4) and (5) we see that $IL - R_0(i) \Longrightarrow IL - R_0(v)$ and $IL - R_0(i) \Longrightarrow IL - R_0(vi)$. $IL - R_0(i\nu) \Longrightarrow IL - R_0(\nu)$: Suppose (X, τ) is an $IL - R_0(i\nu)$. Then we have by definition, if for all $x, y \in X, x \neq y$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) >$ $0, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) > 0$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) > 0$ $0, \gamma_B(y) = 0, \mu_B(x) = 0, \gamma_B(x) > 0.$ $(6) \dots \dots \dots \Longrightarrow \begin{cases} \exists ILOS \ A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) > \mu_A(y); \gamma_A(y) > \gamma_A(x) \\ \text{then } \exists \ B = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) > \mu_B(x); \gamma_B(x) > \gamma_B(y). \end{cases}$ This is $IL - R_0(v)$. $IL - R_0(iv) \Longrightarrow IL - R_0(vi)$: Suppose (X, τ) is an $IL - R_0(iv)$. Then we have by definition, if for all $x, y \in X, x \neq y$ whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) >$ $0, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) > 0$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(y) > 0$ $\begin{array}{l} (7) & (7) \\ (7) & (7) \\ (7) & (7) \\$ From (7) we see that $IL - R_0(iv) \Longrightarrow IL - R_0(vi)$. $IL - R_0(ii) \Longrightarrow IL - R_0(i)$: Suppose (X, τ) is an $IL - R_0(ii)$. Then we have for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$, whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $x_{(p,q)} \in T$ A, $y_{(r,s)} \notin A$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $y_{(r,s)} \in B$, $x_{(p,q)} \notin B$. $\Rightarrow \begin{cases} \exists \text{ ILOS } A = (\mu_A, \gamma_A) \in \tau \text{ with } p \leq \mu_A(x), q \geq \gamma_A(x); r \geq \mu_A(y), s \leq \gamma_A(y) \\ \text{then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that} r \leq \mu_B(y), s \geq \gamma_B(y); p \geq \mu_B(x), q \leq \gamma_B(x) \\ \Rightarrow \begin{cases} \exists \text{ ILOS } A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1 \text{ and} \\ \text{then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that} \mu_B(y) = 1, \gamma_B(y) = 0; \mu_B(x) = 0, \gamma_B(x) = 1. \end{cases}$ As $p, q, r, s \in L = \{0, 0.1, 0.2, ..., 1\}$. Which is $IL - R_0(ii) \Longrightarrow IL - R_0(i)$. $IL - R_0(iii) \Rightarrow IL - R_0(i)$: Suppose (X, τ) is an $IL - R_0(iii)$. Then we have by definition, for any pair of distinct ILFP $x_{(p,q)}$, $y_{(r,s)} \in S(X)$, whenever \exists ILOS A = $(\mu_A, \gamma_A) \in \tau$ with $x_{(p,q)} \in A, y_{(r,s)} \cap A = 0_{\sim}$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $y_{(r,s)} \in \tau$ *B*, $x_{(p,q)} \cap B = 0_{\sim}$. $\Rightarrow \begin{cases} \exists \text{ ILOS } A = (\mu_A, \gamma_A) \in \tau \text{ with } p \leq \mu_A(x), q \geq \gamma_A(x); r \cap \mu_A(y) = 0, s \cup \gamma_A(y) = 1 \\ \text{and then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that} \\ r \leq \mu_B(y), s \geq \gamma_B(y); p \cap \mu_B(x) = 0, q \cup \gamma_B(x) = 1 \\ \Rightarrow \begin{cases} \exists \text{ ILOS } A = (\mu_A, \gamma_A) \in \tau \text{ with } \mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1 \text{ and} \\ \text{then } \exists B = (\mu_B, \gamma_B) \in \tau \text{ such that } \mu_B(y) = 1, \gamma_B(y) = 0; \mu_B(x) = 0, \gamma_B(x) = 1. \\ \text{As } p, q, r, s \in L = \{0, 0.1, 0.2, \dots, 1\} \text{ which is } IL - R_0(iii) \Rightarrow IL - R_0(i). \end{cases}$

Rafiqul Islam and M.S. Hossain

None of the reverse implications is true in general which can be seen from the following counter examples:

Example 3.2.1. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 1, 0)\}$. Hence we see that (X, τ) is an $IL - R_0(i)$ but not $IL - R_0(i)$ and $IL - R_0(ii)$.

Example 3.2.2. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.4, 0.4), (y, 0.3, 0.5)\}$ and $B = \{(x, 0.5, 0.4), (y, 0.4, 0.5)\}$. Hence we see that (X, τ) is an $IL - R_0(vi)$ but not $IL - R_0(i), IL - R_0(iv)$ and $IL - R_0(v)$.

Example 3.2.3. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0.4), (y, 0.4, 0.5)\}$ and $B = \{(x, 0.4, 0.5), (y, 0.6, 0.4)\}$. Hence we see that (X, τ) is an $IL - R_0(v)$ but not $IL - R_0(i)$ and $IL - R_0(iv)$.

Example 3.2.4. Let $X = \{x, y\}, L = \{0, 0.1, 0.2, ..., 1\}$ and τ be an ILT on X generated by $\{A, B\}$ where $A = \{(x, 0.4, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.5), (y, 0.5, 0)\}$. Hence we see that (X, τ) is an $IL - R_0(i\nu)$ but not $IL - R_0(i)$.

Now we discuss 'hereditary' property of ILF $-R_0(j)$ concepts, where (j = i, ii, iii, iv, v, vi.)

Definition 3.3. [14] Let (X, τ) be an ILTS and $A \subseteq X$. we define $\tau_A = \{u | A : u \in \tau\}$ the subspace ILT's on A induced by τ . Then (A, τ_A) is called the subspace of (X, τ) with the underlying set A.

An IL-topological property 'P' is called hereditary if each subspace of an IL-topological space with property 'P' also has property 'P'.

Theorem 3.4. Let (X, τ) be an ILTS and $U \subseteq X$ and $\tau_U = \{A | U : A \in \tau\}$. Then

(a) (X,τ) is $IL - R_0(i) \Longrightarrow (U,\tau_U)$ is $IL - R_0(i)$.

(b) (X,τ) is $IL - R_0(ii) \Longrightarrow (U,\tau_U)$ is $IL - R_0(ii)$.

(c) (X,τ) is $IL - R_0(iii) \Longrightarrow (U,\tau_U)$ is $IL - R_0(iii)$.

(d) (X,τ) is $IL - R_0(i\nu) \Longrightarrow (U,\tau_U)$ is $IL - R_0(i\nu)$.

(e) (X,τ) is $IL - R_0(v) \Longrightarrow (U,\tau_U)$ is $IL - R_0(v)$.

(f) (X,τ) is $IL - R_0(vi) \Longrightarrow (U,\tau_U)$ is $IL - R_0(vi)$.

Proof: We prove only (a). Suppose (X, τ) is $IL - R_0(i)$, we prove that (U, τ_U) is $IL - R_0(i)$.Let $x, y \in U, x \neq y$. Then $x, y \in X, x \neq y$ as $U \subseteq X$. Since (X, τ) is $IL - R_0(i)$, we have for all $x, y \in X, x \neq y$, whenever \exists ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x) = 1, \gamma_A(x) = 0; \mu_A(y) = 0, \gamma_A(y) = 1$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that and $\mu_B(y) = 0$.

1, $\gamma_B(y) = 0$, $\mu_B(x) = 0$, $\gamma_B(x) = 1$. For $U \subseteq X$, we find ILOS $A|U = (\mu_{A|U}, \gamma_{A|U}) \in \tau_U$ with $\mu_{A|U}(x) = 1$, $\gamma_{A|U}(x) = 0$, $\mu_{A|U}(y) = 0$, $\gamma_{A|U}(y) = 1$ then $\exists B|U = (\mu_{B|U}, \gamma_{B|U}) \in \tau_U$ such that $\mu_{B|U}(y) = 1$, $\gamma_{B|U}(y) = 0$, $\mu_{B|U}(x) = 0$, $\gamma_{B|U}(x) = 1$ as $U \subseteq X$. Hence (U, τ_U) is $IL - R_0(i)$. Similarly (b), (c), (d), (e), (f) can be proved.

We observe here that $ILF-R_0(j)$, (j = i, ii, iii, iv, v, vi) concepts are preserved under continuous, one-one and open maps.

Some Features of Intuitionistic L- R₀ Spaces

Theorem 3.5. Let (X, τ) and (Y, s) be two ILTS, $f: (X, \tau) \to (Y, s)$ be one-one, onto and continuous map. Then

(a) (X,τ) is $IL - R_0(i) \Leftrightarrow (Y,s)$ is $IL - R_0(i)$

- (b) (X,τ) is $IL R_0(ii) \Leftrightarrow (Y,s)$ is $IL R_0(ii)$
- (c) (X,τ) is $IL R_0(iii) \Leftrightarrow (Y,s)$ is $IL R_0(iii)$
- (d) (X,τ) is $IL R_0(iv) \Leftrightarrow (Y,s)$ is $IL R_0(iv)$
- (e) (X,τ) is $IL R_0(v) \Leftrightarrow (Y,s)$ is $IL R_0(v)$ (f) (X,τ) is $IL - R_0(vi) \Leftrightarrow (Y,s)$ is $IL - R_0(vi)$.

Proof: We prove only (a). Suppose (X, τ) is $IL - R_0(i)$, we prove that (Y, s) is $IL - R_0(i)$. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$. Since f is onto, $\exists x_1, x_2 \in X$, such that $f(x_1) = y_1, f(x_2) = y_2$ and $x_1 \neq x_2$ as f is one-one. Again since (X, τ) is $IL - R_0(i)$, we have for all $x_1, x_2 \in X, x_1 \neq x_2$, whenever \exists an ILOS $A = (\mu_A, \gamma_A) \in \tau$ with $\mu_A(x_1) = 1, \gamma_A(x_1) = 0, \mu_A(x_2) = 0, \gamma_A(x_2) = 1$ then $\exists B = (\mu_B, \gamma_B) \in \tau$ such that $\mu_B(x_2) = 1, \gamma_B(x_2) = 0, \mu_B(x_1) = 0, \gamma_B(x_1) = 1$.Since $f: (X, \tau) \to (Y, s)$, whenever \exists ILOS $f(A) = (f(\mu_A), 1 - f(1 - \gamma_A))$ with $f(\mu_A)(y_1) = \{\sup \mu_A(x_1): f(x_1) = y_1\} = 1$ { $1 - f(1 - \gamma_A)\}(y_1) = 1 - f(1 - \gamma_A)(y_1) = 1 - \{\sup(1 - \gamma_A)(x_1): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1)): f(x_1) = y_1\} = 1 - \{\sup(1 - \gamma_A(x_1))\} = 1 - 1 = 0 \}$

$$f(\mu_A)(y_2) = \{\sup \mu_A(x_2): f(x_2) = y_2\} = 0$$

 $\{1 - f(1 - \gamma_A)\}(y_2) = 1 - f(1 - \gamma_A)(y_2) = 1 - \{\sup(1 - \gamma_A)(x_2): f(x_2) = y_2\}$ = 1 - $\{\sup(1 - \gamma_A(x_2)): f(x_2) = y_2\} = 1 - \{\sup(1 - 1)\} = 1 - 0 = 1. \text{ Then } \exists f(B) = (f(\mu_B), 1 - f(1 - \gamma_B)) \in s \text{ such that } f(\mu_B)(y_2) = 1; \{1 - f(1 - \gamma_B)\}(y_2) = 0; f(\mu_B)(y_1) = 0; \{1 - f(1 - \gamma_B)\}(y_1) = 1. \text{Hence}(Y, s) \text{ is } IL - R_0(i).$

Conversely suppose that (Y, s) is $IL - R_0(i)$. We prove that (X, τ) is $IL - R_0(i)$. Let $x_1, x_2 \in X$ with $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$ as f is one-one. Put $f(x_1) = y_1$, and $f(x_2) = y_2$ then $y_1 \neq y_2$. Since (Y, s) is $IL - R_0(i)$, whenever \exists ILOS $A = (\mu_A, \gamma_A) \in s$ with $\mu_A(y_1) = 1, \gamma_A(y_1) = 0; \ \mu_A(y_2) = 0, \gamma_A(y_2) = 1$ then $\exists B = (\mu_B, \gamma_B) \in s$ such that $\mu_B(y_1) = 0, \gamma_B(y_1) = 1; \ \mu_B(y_2) = 1, \gamma_B(y_2) = 0.$ *i.e.*

$$\begin{cases} \exists \text{ ILOS } A = (\mu_A, \gamma_A) \in s \text{ with } \mu_A f(x_1) = 1, \gamma_A f(x_1) = 0; \mu_A f(x_2) = 0, \gamma_A f(x_2) = 1 \\ \text{ then } \exists B = (\mu_B, \gamma_B) \in s \ \mu_B f(x_1) = 0, \gamma_B f(x_1) = 1; \mu_B f(x_2) = 1, \gamma_B f(x_2) = 0. \end{cases}$$

$$\Rightarrow \{f^{-1}\mu_A(x_1) = 1, f^{-1}\gamma_A(x_1) = 0; f^{-1}\mu_A(x_2) = 0, f^{-1}\gamma_A(x_2) = 1 \text{ and } f^{-1}\mu_A(x_2) = 0, f^{-1}\gamma_A(x_2) = 1 \text{ and } f^{-1}\mu_A(x_2) = 0, f^{-1}\gamma_A(x_2) = 1 \text{ and } f^{-1}\mu_A(x_2) = 0, f^{-1}\mu_A(x_2) =$$

$$\int \int f^{-1}\mu_B(x_1) = 0, f^{-1}\gamma_B(x_1) = 1; f^{-1}\mu_B(x_2) = 1, f^{-1}\gamma_B(x_2) = 0$$

Since $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in s$, Hence it is clear that if $\forall x_1, x_2 \in X, x_1 \neq x_2$ whenever $\exists f^{-1}(A) = (f^{-1}(\mu_A), f^{-1}(\gamma_A)) \in \tau$ with $f^{-1}\mu_A(x_1) = 1, f^{-1}\gamma_A(x_1) = 0; f^{-1}\mu_A(x_2) = 0, f^{-1}\gamma_A(x_2) = 1$ then $\exists f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)) \in \tau$ such that $f^{-1}\mu_B(x_1) = 0, f^{-1}\gamma_B(x_1) = 1; f^{-1}\mu_B(x_2) = 1, f^{-1}\gamma_B(x_2) = 0$.

Hence (X, τ) is also $IL - R_0(i)$. Similarly, (b), (c), (d), (e), (f) can be proved.

REFERENCES

- 1. K.T. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (1983) (Central Sci. Tech. Library, Bulg. Acad. Sci., 1984).
- 2. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986) 87–96.
- 3. K.T.Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS, 1-88: Sofia (1988).

Rafiqul Islam and M.S. Hossain

- 4. K.T.Atanassov and S.Stoeva, Intuitionistic fuzzy sets, in: Polish Symp. On interval & Fuzzy Mathematics, Poznan, (1983) 23-26.
- 5. K.T.Atanassov and S.Stoeva, Intuitionistic L-fuzzy sets, in: R. Trappl, Ed., Cybernetics and System Research, 2(1984) 539-540.
- 6. C.L.Chang, Fuzzy topological spaces, J. Math. Anal Appl., 24(1968)182-192.
- 7. D.Coker, A note on intuitionistic sets and intuitionistic points, TU J. Math.,20(3) (1996) 343-351.
- 8. D.Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological space, J. fuzzy Math., 4(1996) 749-764.
- 9. D.Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets andSystems, 88(1997) 81-89.
- 10. D.Coker, An introduction to intuitionistic topological space, BUSEFAL,81(2000) 51-56.
- 11. E.Ahmed, M.S. Hossain and D.M.Ali, On Intuitionistic Fuzzy T₁-Spaces, Journal of Physical Science, 19(2014) 59-66.
- 12. J.A.Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1967) 145-174.
- R.Islam and M.S.Hossain, On T₁ Space in L-Topological Spaces, Journal of Physical Science, 21(2016) 15-22.
- 14. R.Islam, M.S.Hossain and M.R.Amin, Some Remarks on Intuitionistic L- T₂ Spaces, Annals of Pure and Applied Mathematics, 13(2017) 249-255.
- 15. M.A.M.Talukder and D.M.Ali, On Almost Partially α-Compact Fuzzy Sets, Journal of Physical Science, 19(2014) 67-79.
- 16. L.A.Zadeh, Fuzzy sets, Information and Control, 8(1965) 338-353.