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ABSTRACT 
R0 space in intuitionistic L-topological spaces are defined and studied in this paper. We 
discussed six notions of R0 space in intuitionistic L-topological spaces and induced 
certain relationship among them. We also showed that all of these definitions satisfy 
‘hereditary’ property and preserved under one-one, onto and continuous mapping. 
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1. Introduction 
The idea of fuzzy sets and L-fuzzy sets were initially introduced by Zadeh [16] in 1965 
and Goguen [12] in 1967 respectively. After then in 1984, intuitionistic fuzzy sets were 
first published by Attanassov [1] and many works by the same author and his colleagues 
appeared in the literature [2-4]. Later, this concept was generalized to ‘intuitionistic L-
fuzzy sets’ by Atanassov and Stoeva [5]. Here, we introduced ‘intuitionistic L-topology’ 
by using ‘intuitionistic L-fuzzy sets’ in the sense of Chang [6]. Moreover, we defined 
possible six notions, investigated some properties and features of R0 space in 
intuitionistic L-topological spaces.  
 
2. Notation and preliminaries 
Through this paper, X will be a nonempty set, ø be the empty set, and L is a complete 
distributive lattice with 0 and 1. A , B , … be intuitionistic L-fuzzy sets, t be the 
intuitionistic topology, τ be the intuitionistic L-topology, I =  [0, 1],  and the functions ��: � → � and ��: � → � denote the degree of membership (namely ���	
) and the 
degree of none membership (namely ���	
). 
Now we recall some basic definitions and known results in intuitionistic L-fuzzy sets and 
intuitionistic L-topological spaces. 
 
Definition 2.1. [16] Let � be a non-empty set and � = 	 �0, 1�.	A fuzzy set in � is a 
function �: � → � which assigns to each element	 ∈ �, a degree of membership��	
 ∈ �. 
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Definition 2.2. [13] Let �:	� → � be a function and� be fuzzy set in�. Then the image ���
is a fuzzy set in � which membership function is defined by ����

��
 = �������	
����	
 = ��if�"#��
 	≠ ∅, 	 ∈ � ����

��
 = 	0	if�"#��
 = ∅, 	 ∈ �. 
 
Definition 2.3.[12] Let � be a non-empty set and � be a complete distributive lattice with 
0 and 1. An L-fuzzy set in � is a function &: � → � which assigns to each element  	 ∈ �  
a degree of membership, &�	
 ∈ �. 
 
Remark 2.4. Throughout this paper we consider the complete distributive lattice � = '0, 0.1, 0.2, … ,1* and from the above definitions we show that every L-fuzzy set is 
also a fuzzy set but converse is not true in general. 
 
Example 2.4.1. Let � = '+, ,, -* and � = '0, 0.1, 0.2, … ,1*. A function &: � → � is 
defined by &�+
 = 0.2, &�,
 = 0.5, &�-
 = 0 which is L-fuzzy set and also a fuzzy set. 
 
Example 2.4.2. Let � = '+, ,, -* and � = �0, 1�. A function �: � → � is defined by ��+
 = 0.25, ��,
 = 0.55, ��-
 = 0 which is fuzzy set but not an L-fuzzy set 
because	0.25, 0.55 ∉ �. 
 
Definition 2.5.[5] Let � be a non-empty set and � be a complete distributive lattice with 
0 and 1. An intuitionistic L-fuzzy set (ILFS for short) 0 in � is an object having the form 0 = ��	, ���	
, ���	
�: 	 ∈ ��. Where the functions ��: � → � and ��: � → � denote the 
degree of membership (namely	���	
) and the degree of none membership 
(namely	���	
) of each element 	 ∈ � to the set	0, respectively, and 0 ≤ ���	
 +���	
 ≤ 1 for each 	 ∈ �. 

Let ���
 denote the set of all intuitionistic L-fuzzy set in �.Obviously every L-
fuzzy set ���	
 in � is an intuitionistic L-fuzzy set of the form ���, 1 − ��
. 
Throughout this paper we use the simpler notation	0 = ���, ��
instead of 0 =��	, ���	
, ���	
�: 	 ∈ ��. 
 
Definition 2.6. [9] Let 0 = ���, ��
 and 4 = ��5 , �5
 be intuitionistic L-fuzzy sets in X. 
Then  
(1) 0 ⊆ 4 if and only if �� ≤ �5 and �� ≥ �5 
(2) 0 = 4 if and only if 0 ⊆ 4 and 4 ⊆ 0 
(3) 08 = ���, ��
 
(4) 0 ∩ 4 = ��� ∩ �5; �� ∪ �5
 
(5) 0 ∪ 4 = ��� ∪ �5; �� ∩ �5
 
(6) 0~ = �0~, 1~
 and 1~ = �1~, 0~
. 
Let � be a map from a set � to a set �. Let 0 = ���, ��
 be an ILFS of � and 4 =��5, �5
 be an ILFS of �. Then �"#�4
 is an ILFS of � defined by �"#�4
 =��"#��5
, �"#��5

 and ��0
is an ILFS of � defined by ��0
 = �����
, 1 −��1 − ��
�. 
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Definition 2.7.[10] An intuitionistic topology (IT for short) on a nonempty set �	is a 
family	= of IS’s in � satisfies the following axioms: 
(i) ∅~, �~ ∈ =. 
(ii)  If >#	, >? ∈ = then ># ∩ >? ∈ =. 
(iii)  If >@ ∈ =	for each A ∈ Λthen  ∪@∈C >@ ∈ =. 
Then the pair ��, =
 is called an intuitionistic topological space (ITS, for short) and the 
members of = are called intuitionistic open sets (IOS for short).  
 
Definition 2.8.[11] An ITS ��, =
is called � − DE space if for all 	, � ∈ �, 	 ≠ �, ∃ an IOS > = �0#, 0?
 ∈ = such that 	 ∈ 0#, � ∈ 0? or � ∈ 0#, 	 ∈ 0?. 
 
Definition 2.9.[14] Let �, G ∈ � = '0, 0.1, 0.2, … ,1*and � + G ≤ 1. An intuitionistic L-
fuzzy point (ILFP for short) 	�H,I
of � is an ILFS of � defined by  

	�H,I
��
 = J��, G
	A�	� = 	,�0,1
A�	� ≠ 	 K 
In this case, 	 is called the support of 	�H,I
 and � and G are called the value and none 
value of 	�H,I
, respectively. The set of all ILFP of � we denoted it by L��
. 
An ILFP 	�H,I
 is said to belong to an ILFS 0 = ���, ��
 of � denoted by 	�H,I
 ∈ 0, if 
and only if � ≤ ���	
 and G ≥ ���	
 but 	�H,I
 ∉ 0 if and only if � ≥ ���	
 and G ≤ ���	
. 
 
Definition 2.10. [14] If A is an ILFS and 	�H,I
 is an ILFP then the intersection between 
ILFS and ILFP is defined as 	�H,I
 ∩ 0 = �� ∩ ���	
; G ∪ ���	
�. 
 
Definition 2.11.[14] An intuitionistic L-topology (ILT for short) on �	is a family	M of 
ILFSs in � which satisfies the following conditions: 
(i) 0~, 1~ ∈ M. 
(ii)  If 0#	, 0? ∈ M then 0# ∩ 0? ∈ M. 
(iii)  If 0@ ∈ M	for each A ∈ Λthen  ∪@∈C 0@ ∈ M. 
Then the pair ��, M
 is called an intuitionistic L-topological space (ILTS, for short) and 
the members of M are called intuitionistic L-fuzzy open sets (ILFOS for short). An 
intuitionistic L-fuzzy set 4 is called an intuitionistic L-fuzzy closed set (ILFC for short) 
if 1 − 4 ∈ M. 
 
Definition 2.12. [9] Let ��, M
 and ��, �
 be two ILTSs. Then a map �: � → � is said to 
be  
(i) Continuous if �"#�4
 is an ILFOS of � for each ILFOS 4 of �, or equivalently, �"#�4
 is an ILFCS of � for each ILFCS 4 of �, 
(ii)  Open if ��0
 is an ILFOS of � for each ILFOS 0 of �, 
(iii)  Closed if ��0
 is an ILFCS of � for each ILFCS 0 of �, 
(iv) A homeomorphism if � is bijective, continuous and open. 
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3. Definition and properties of intuitionistic lattice fuzzy R0 spaces 
In this section, we give sixnotions ofR0 spacein intuitionistic L-topological spaces and 
establish some of their related theorems. 
 
Definition 3.1. An ILTS ��, M
 is called 
(a) �� − NE�A
 if for all 	, � ∈ �, 	 ≠ �, whenever ∃ ILOS 0 = ���, ��
 ∈ M with ���	
 = 1, ���	
 = 0; ����
 = 0, ����
 = 1 then ∃4 = ��5, �5
 ∈ M such that and	�5��
 = 1, �5��
 = 0, �5�	
 = 0, �5�	
 = 1. 
(b) �� − NE�AA
 if for any pair of distinct ILFP 	�H,I
		, ��R,S
 ∈ L��
 whenever ∃ ILOS 0 = ���, ��
 ∈ M with 	�H,I
 ∈ 0, ��R,S
 ∉ 0 then ∃4 = ��5 , �5
 ∈ M such that ��R,S
 ∈ 4, 	�H,I
 ∉ 4. 
(c) �� − NE�AAA
 if for any pair of distinct ILFP 	�H,I
		, ��R,S
 ∈ L��
 whenever ∃ ILOS 0 = ���, ��
 with 	�H,I
 ∈ 0, ��R,S
 ∩ 0 = 0~ then ∃4 = ��5, �5
 ∈ M such that  ��R,S
 ∈ 4, 	�H,I
 ∩ 4 = 0~. 
(d) �� − NE�AT
 if for all 	, � ∈ �, 	 ≠ � whenever 	∃ ILOS 0 = ���, ��
 ∈ M with ���	
 > 0, ���	
 = 0; ����
 = 0, ����
 > 0 then ∃4 = ��5 , �5
 ∈ M such 

that�5��
 > 0, �5��
 = 0, �5�	
 = 0, �5�	
 > 0. 
(e) �� − NE�T
 if for all 	, � ∈ �, 	 ≠ � whenever ∃ ILOS 0 = ���, ��
 ∈ M with ���	
 > ����
; ����
 > ���	
 then ∃4 = ��5 , �5
 ∈ M such that 	�5��
 >�5�	
; �5�	
 > �5��
. 
(f) �� − NE�TA
 if for all 	, � ∈ �, 	 ≠ � whenever ∃ ILOS 0 = ���, ��
 ∈ M with ���	
 ≠ ����
; ���	
 ≠ ����
 then ∃4 = ��5 , �5
 ∈ M such that �5�	
 ≠�5��
; �5�	
 ≠ �5��
 

 
Theorem 3.2. Let ��, M
 be an ILTS. Then we have the following implications: 

�� − NE�AA
�� − NE�AT
 
�� − NE�A
�� − NE�T
 

�� − NE�AAA
	�� − NE�TA
 
Proof: VW − XY�Z
 ⟹ VW − XY�Z\
 ⟹ VW − XY�\
 	⟹ 	VW − XY�\Z
: Suppose ��, M
 is 
an �� − NE�A
. Then we have by definition, if for all 	, � ∈ �, 	 ≠ �, whenever ∃ ILOS 0 = ���, ��
 ∈ M with ���	
 = 1, ���	
 = 0; ����
 = 0, ����
 = 1 then ∃4 =��5, �5
 ∈ M such that	�5��
 = 1, �5��
 = 0, �5�	
 = 0, �5�	
 = 1. Hence we have �1
 … J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 > 0, ���	
 = 0; ����
 = 0, ����
 > 0	then	∃	4 = ��5 , �5
 ∈ M	such	that	�5��
 > 0, �5��
 = 0, �5�	
 = 0, �5�	
 > 0K 
�2
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 > ����
; ����
 > ���	
	then	∃	4 = ��5, �5
 ∈ M	such	that	�5��
 > �5�	
; �5�	
 > �5��
.K �3
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 ≠ ����
; ���	
 ≠ ����
then	∃	4 = ��5 , �5
 ∈ M	such	that	�5�	
 ≠ �5��
; �5�	
 ≠ �5��
.K 
From (1), (2) and (3) we see that �� − NE�A
 ⟹ �� − NE�AT
 ⟹ �� − NE�T
 ⟹ �� −NE�TA
. 
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VW − XY�Z
 ⟹ VW − XY�\
ijk	VW − XY�Z
 ⟹ VW − XY�\Z
: Suppose ��, M
is an	�� −NE�A
. Then we have by definition, if for all 	, � ∈ �, 	 ≠ �, whenever ∃ ILOS 0 =���, ��
 ∈ M with ���	
 = 1, ���	
 = 0; ����
 = 0, ����
 = 1 then ∃4 = ��5 , �5
 ∈ M 
such that�5��
 = 1, �5��
 = 0, �5�	
 = 0, �5�	
 = 1. �4
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 > ����
; ����
 > ���	
	then	∃	4 = ��5, �5
 ∈ M	such	that	�5��
 > �5�	
; �5�	
 > �5��
.K �5
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 ≠ ����
; ���	
 ≠ ����
then	∃	4 = ��5 , �5
 ∈ M	such	that	�5�	
 ≠ �5��
; �5�	
 ≠ �5��
.K 
From (4) and (5) we see that �� − NE�A
 ⟹ �� − NE�T
and	�� − NE�A
 ⟹ �� − NE�TA
. VW − XY�Z\
 ⟹ VW − XY�\
: Suppose ��, M
 is an �� − NE�AT
. Then we have by 
definition, if for all 	, � ∈ �, 	 ≠ � whenever 	∃ ILOS 0 = ���, ��
 ∈ M with ���	
 >0, ���	
 = 0; ����
 = 0, ����
 > 0 then ∃4 = ��5 , �5
 ∈ M such that�5��
 >0, �5��
 = 0, �5�	
 = 0, �5�	
 > 0. �6
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 > ����
; ����
 > ���	
	then	∃	4 = ��5, �5
 ∈ M	such	that	�5��
 > �5�	
; �5�	
 > �5��
.K 
This is �� − NE�T
. VW − XY�Z\
 ⟹ VW − XY�\Z
: Suppose ��, M
 is an �� − NE�AT
. Then we have by 
definition, if for all 	, � ∈ �, 	 ≠ � whenever 	∃ ILOS 0 = ���, ��
 ∈ M with ���	
 >0, ���	
 = 0; ����
 = 0, ����
 > 0 then ∃4 = ��5 , �5
 ∈ M such that�5��
 >0, �5��
 = 0, �5�	
 = 0, �5�	
 > 0. �7
 … … … ⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 ≠ ����
; ���	
 ≠ ����
then	∃	4 = ��5 , �5
 ∈ M	such	that	�5�	
 ≠ �5��
; �5�	
 ≠ �5��
.K 
From (7) we see that �� − NE�AT
 ⟹ �� − NE�TA
. VW − XY�ZZ
 ⟹ VW − XY�Z
: Suppose ��, M
 is an �� − NE�AA
. Then we have for any pair 
of distinct ILFP 	�H,I
		, ��R,S
 ∈ L��
,	whenever ∃ ILOS 0 = ���, ��
 ∈ M with 	�H,I
 ∈0, ��R,S
 ∉ 0 then ∃4 = ��5 , �5
 ∈ M such that ��R,S
 ∈ 4, 	�H,I
 ∉ 4. 

⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	� ≤ ���	
, G ≥ ���	
; o ≥ ����
, � ≤ ����
then	∃4 = ��5 , �5
 ∈ M	such	thato ≤ �5��
, � ≥ �5��
; � ≥ �5�	
, G ≤ �5�	
K ⟹ J∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 = 1, ���	
 = 0; ����
 = 0, ����
 = 1	andthen	∃4 = ��5, �5
 ∈ M	such	that�5��
 = 1, �5��
 = 0; �5�	
 = 0, �5�	
 = 1.K 
As �, G, o, � ∈ � = '0,0.1,0.2, … ,1*. Which is �� − NE�AA
 ⟹ �� − NE�A
. VW − XY�ZZZ
 ⟹ VW − XY�Z
: Suppose ��, M
 is an �� − NE�AAA
. Then we have by 
definition, for any pair of distinct ILFP 	�H,I
		, ��R,S
 ∈ L��
, whenever	∃	ILOS	0 =���, ��
 ∈ τ	with		�H,I
 ∈ 0, ��R,S
 ∩ 0 = 0~	then	∃4 = ��5, �5
 ∈ M	such	that		��R,S
 ∈4, 	�H,I
 ∩ 4 = 0~. 
⟹ s∃	ILOS	0 = ���, ��
 ∈ M	with	� ≤ ���	
, G ≥ ���	
; o ∩ ����
 = 0, � ∪ ����
 = 1and	then	∃4 = ��5, �5
 ∈ M	such	that																																																																							o ≤ �5��
, � ≥ �5��
; � ∩ �5�	
 = 0, G ∪ �5�	
 = 1																																													 K 
⟹ J ∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 = 1, ���	
 = 0; ����
 = 0, ����
 = 1	andthen	∃4 = ��5, �5
 ∈ M	such	that	�5��
 = 1, �5��
 = 0; �5�	
 = 0, �5�	
 = 1.K 
As �, G, o, � ∈ � = '0,0.1,0.2, … ,1* which is �� − NE�AAA
 ⟹ �� − NE�A
. 
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None of the reverse implications is true in general which can be seen from the following 
counter examples: 
 
Example 3.2.1. Let � = '	, �*, � = '0, 0.1, 0.2, … ,1* and M be an ILT on � generated by '0, 4* where 0 = '�	, 1,0
, ��, 0,1
* and 4 = '�	, 0,1
, ��, 1,0
*.  Hence we see that ��, M
 is an �� − NE�A
 but not �� − NE�AA
and �� − NE�AAA
. 
 
Example 3.2.2. Let � = '	, �*, � = '0, 0.1, 0.2, … ,1* and M be an ILT on � generated by '0, 4* where 0 = '�	, 0.4,0.4
, ��, 0.3,0.5
* and 4 = '�	, 0.5,0.4
, ��, 0.4,0.5
*. Hence 
we see that ��, M
 is an �� − NE�TA
 but not �� − NE�A
, �� − NE�AT
 and �� − NE�T
. 
 
Example 3.2.3. Let � = '	, �*, � = '0, 0.1, 0.2, … ,1* and M be an ILT on � generated by '0, 4* where 0 = '�	, 0.5,0.4
, ��, 0.4,0.5
* and 4 = '�	, 0.4,0.5
, ��, 0.6,0.4
*. Hence 
we see that ��, M
 is an �� − NE�T
 but not �� − NE�A
 and �� − NE�AT
. 
 
Example 3.2.4. Let � = '	, �*, � = '0, 0.1, 0.2, … ,1* and M be an ILT on � generated by '0, 4* where 0 = '�	, 0.4,0
, ��, 0,0.5
* and 4 = '�	, 0,0.5
, ��, 0.5,0
*. Hence we see 
that ��, M
 is an �� − NE�AT
 but not �� − NE�A
. 
Now we discuss ‘hereditary’ property of ILF –R0(j) concepts, where (j = i, ii, iii, iv,v, vi.) 
 
Definition 3.3. [14] Let ��, M
 be an ILTS and 0 ⊆ �. we define M� = '�|0: � ∈ M* the 
subspace ILT’s on 0 induced by M.Then�0, M�
 is called the subspace of ��, M
 with the 
underlying set 0. 
An IL-topological property ‘P’ is called hereditary if each subspace of an IL-topological 
space with property ‘P’ also has property ‘P’. 
 
Theorem 3.4. Let ��, M
 be an ILTS and u ⊆ � and Mv = '0|u: 0 ∈ M*. Then 
(a) ��, M
 is �� − NE�A
 ⟹ �u, Mv
 is �� − NE�A
. 
(b) ��, M
 is �� − NE�AA
 ⟹ �u, Mv
 is �� − NE�AA
. 
(c) ��, M
 is �� − NE�AAA
 ⟹ �u, Mv
 is �� − NE�AAA
. 
(d) ��, M
 is �� − NE�AT
 ⟹ �u, Mv
 is �� − NE�AT
. 
(e) ��, M
 is �� − NE�T
 ⟹ �u, Mv
 is �� − NE�T
. 
(f) ��, M
 is �� − NE�TA
 ⟹ �u, Mv
 is �� − NE�TA
. 
Proof: We prove only (a). Suppose ��, M
 is �� − NE�A
, we prove that �u, Mv
 is �� − NE�A
.Let 	, � ∈ u, 	 ≠ �. Then 	, � ∈ �, 	 ≠ � as u ⊆ �. Since ��, M
 is �� −NE�A
, we have for all 	, � ∈ �, 	 ≠ �, whenever	∃	ILOS	0 = ���, ��
 ∈ M	with	���	
 =1, ���	
 = 0; ����
 = 0, ����
 = 1	then	∃4 = ��5 , �5
 ∈ M	such	that	and	�5��
 =1, �5��
 = 0, �5�	
 = 0, �5�	
 = 1.For	u ⊆ �, we find ILOS	0|u = ���|v , ��|v� ∈ Mv 
with ��|v�	
 = 1, ��|v�	
 = 0, ��|v��
 = 0, ��|v��
 = 1then ∃	4|u = ��5|v , �5|v� ∈Mv such that �5|v��
 = 1, �5|v��
 = 0, �5|v�	
 = 0, �5|v�	
 = 1	as	u ⊆ �. Hence �u, Mv
 is �� − NE�A
. Similarly (b), (c), (d), (e), (f) can be proved.    
We observe here that ILF-R0(j) ,( j = i, ii, iii, iv, v, vi ) concepts are preserved under 
continuous, one-one and open maps. 
 



Some Features of Intuitionistic L- R0 Spaces 
 

105 

 

Theorem 3.5. Let ��, M
 and ��, �
 be two ILTS, �: ��, M
 → ��, �
 be one-one, onto and 
continuous map. Then 
(a) ��, M
 is �� − NE�A
 ⟺ ��, �
 is �� − NE�A
 
(b) ��, M
 is �� − NE�AA
 ⟺ ��, �
 is �� − NE�AA
 
(c) ��, M
 is �� − NE�AAA
 ⟺ ��, �
 is �� − NE�AAA
 
(d) ��, M
 is �� − NE�AT
 ⟺ ��, �
 is �� − NE�AT
 
(e) ��, M
 is �� − NE�T
 ⟺ ��, �
 is �� − NE�T
 
(f) ��, M
 is �� − NE�TA
 ⟺ ��, �
 is �� − NE�TA
. 
Proof: We prove only (a). Suppose ��, M
 is �� − NE�A
, we prove that ��, �
 is �� −NE�A
. Let �#, �? ∈ � with �# ≠ 	�?. Since � is onto, ∃		#, 	? ∈ �, such that ��	#
 =�#, ��	?
 = �? and 	# ≠ 	? as � is one-one. Again since ��, M
 is �� − NE�A
, we have 
for all 	#, 	? ∈ �, 	# ≠		?,	whenever ∃	an ILOS 0 = ���, ��
 ∈ M with ���	#
 =1, ���	#
 = 0, ���	?
 = 0, ���	?
 = 1then ∃	4 = ��5 , �5
 ∈ M such that �5�	?
 =1, �5�	?
 = 0, �5�	#
 = 0, �5�	#
 = 1.Since�: ��, M
 → ��, �
,whenever ∃ ILOS ��0
 = �����
, 1 − ��1 − ��
� with	����
��#
 = 'sup ���	#
: ��	#
 = �#* = 1 '1 − ��1 − ��
*��#
 = 1 − ��1 − ��
��#
 = 1 − 'sup�1 − ��
�	#
: ��	#
 = �#* = 1 − �sup�1 − ���	#
�: ��	#
 = �#� = 1 − 'sup�1 − 0
* = 1 − 1 = 0 And    ����
��?
 = 'sup ���	?
: ��	?
 = �?* = 0 '1 − ��1 − ��
*��?
 = 1 − ��1 − ��
��?
 = 1 − 'sup�1 − ��
�	?
: ��	?
 = �?* = 1 − �sup�1 − ���	?
�: ��	?
 = �?� = 1 − 'sup�1 − 1
* = 1 − 0 = 1.	Then∃��4
 =����5
, 1 − ��1 − �5

 ∈ � such that ���5
��?
 = 1; '1 − ��1 − �5
*��?
 =0	; ���5
��#
 = 0; '1 − ��1 − �5
*��#
 = 1.Hence��, �
 is �� − NE�A
. 
Conversely suppose that ��, �
 is �� − NE�A
.We prove that ��, M
 is �� − NE�A
. Let 	#, 	? ∈ �with	# ≠		? ⟹ ��	#
 ≠ ��	?
as� is one-one. Put ��	#
 = �#, and	��	?
 =�?then �# ≠	�?. Since ��, �
 is �� − NE�A
, whenever∃	ILOS	0 = ���, ��
 ∈ � with ����#
 = 1, ����#
 = 0;	����?
 = 0, ����?
 = 1then	∃	4 = ��5, �5
 ∈ � such that �5��#
 = 0, �5��#
 = 1;	�5��?
 = 1, �5��?
 = 0. A. y. J∃	ILOS	0 = ���, ��
 ∈ �	with����	#
 = 1, ����	#
 = 0; ����	?
 = 0, ����	?
 = 1then	∃	4 = ��5 , �5
 ∈ �	�5��	#
 = 0, �5��	#
 = 1; �5��	?
 = 1, �5��	?
 = 0. K 

⟹ J�"#���	#
 = 1, �"#���	#
 = 0; �"#���	?
 = 0, �"#���	?
 = 1	and�"#�5�	#
 = 0, �"#�5�	#
 = 1; �"#�5�	?
 = 1, �"#�5�	?
 = 0. K 
Since	0 = ���, ��
, 4 = ��5 , �5
 ∈ �,	Hence it is clear that if ∀		#, 	? ∈ �, 	# ≠ 	? 
whenever ∃�"#�0
 = ��"#���
, �"#���

 ∈ M with �"#���	#
 = 1, �"#���	#
 =0; �"#���	?
 = 0, �"#���	?
 = 1 then ∃�"#�4
 = ��"#��5
, �"#��5

 ∈ M such that �"#�5�	#
 = 0, �"#�5�	#
 = 1; �"#�5�	?
 = 1, �"#�5�	?
 = 0. 
Hence ��, M
 is also �� − NE�A
.Similarly, (b), (c), (d), (e), (f) can be proved.    
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