2017

MCA

1st Semester Examination PROBABILITY & STATISTICS

PAPER-MCA-105

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any five questions:

5×4

- The expectation of a random variable X is 50. Find the expectation of 3x + 4.
- 2. A discrete sample space consists of only four sample points with associated probabilities.

x, x + 1, 2x, 2x - 1. Find x.

4

3. Under what condition is the following equality true?

$$P(A \cup B) = P(A) + Q(B).$$

If that condition is not true, then what will be the expression for $P(A \cup B)$?

- 4. On an average, an event X occurs two times a day. Assuming that the distribution is Poisson, find the probability that X occurs three times a day.
- 5. Find P(2 < x < 6), Where the random variable x has probability density function $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, $0 < x < \infty$

= 0, else where.

- 6. What is the probability that a four digit number has none of its digits repeated? (A four digit number does not have 0 for the first three digits).
- 7. A coin is tossed and a six-sided die is rolled. Find the probability of getting a head on the coin and six on the die, assuming that both the coin and the die are fair.

Group-B

Answer any two questions:

2×15

8. (a) If A_1 , A_2 , ..., A_n be n events connected to a random experiment E, then

$$P(A_1 + A_2 + ... + A_n) \le P(A_1) + P(A_2) + ... + P(A_n).$$
 7

(b) From the numbers 1, 2, 3, ..., (2n + 1), three are chosen at random. Prove that the probability that these numbers

are in A.P is
$$\frac{3n}{4n^2-1}$$
.

8

9. (a) The probability that shooter 1 hits the target is $\frac{3}{7}$, and

the probability that shooter 2 hits the target is $\frac{2}{5}$. Find the probability that at least one of them hits the target when both of them try.

- (b) A coin is tossed two times. Find the probability that the toss results in one head and one tail. Assume the coin to be fair.
- (c) A fair coin is tossed three times. Find the probability of getting two tails and one head.

10. (a) The probability density function of continuous distribution is given by

$$f(x) = a(x - x^2), 0 \le x \le 1$$
, elsewhere.
= 0

Find the mean and variance, where a is a constant. 8

(b) The spectrum of a random variable X consists of the

points 1, 2, ..., n and
$$P(X = i)$$
 is proportional to $\frac{1}{i(i+1)}$.

Compute $P(3 < x \le n)$ and P(x > 5).

Group-C

Answer any one question:

1×20

4+3

11. (a) A population consists of five numbers:

2, 3, 6, 8, 11.

Consider all samples of size two. Find ;

- (i) the population mean.
- (ii) the population variance.
- (iii) The mean of the means of all possible samples.

2+3+5

(b) Compute 3 years moving averages for the following data:

Years	2005	2006	2007	2008	2009	2010
Values	11	13	16	22	4	66

5

- (c) The arithmetic mean of 2, 6, x, 5 and 7 is 4. Find:
 - (i) x;
 - (ii) the median;
 - (iii) the variance.

1+1+3

- 12. (a) The mean of a set of values $x_1, x_2, x_3, ..., x_n$ is \bar{x} and the variance is v. If all the values are increased by a value k, find the new mean and variance.
 - (b) If the above values are multiplied by k instead of being added, what will be the new mean and variance? 7
 - (c) Under which condition will the arithmetic and geometric means of two given numbers be the same?

(The geometric mean of two numbers a and b is \sqrt{ab}).

1

(d) Give three examples of measures of central tendency.Also, give one example of measures of dispersion.

[Internal Assessment: 30 Marks.]