2015

M.Sc. Part-II Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-VI

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any two questions:

2×5

- (a) Describe general register machines with block diagram.
- (b) Explain decoders. Construct a 3-to-8 decoder using two 2-to-4 decoders.

2×5

- (c) Discuss about the branch instruction and subroutine call of program at the time of program execution.
- 2. Answer any three questions:

3×5

- (a) What do you mean by a linked list? Write algorithms to insert a node to the linked list and to remove a node from the linked list.
- (b) Define stack. Write an algorithm to store a set of real numbers into a stack and find their sum.
- (c) Define heap. Write an algorithm to sort a set of real numbers using heap sort.
- (d) Explain DFS and BFS. What are the differences between them?
- (e) Use Dijkstra's algorithm to find the shortest distance between the vertices a and g in the following digraph:

- 3. Answer any two questions:
 - (a) Explain the following terms in connection with data flow:

simplex, half-duplex and full-duplex.

- (b) Write a note on network topologies.
- (c) Which services are available by a PC when it is connected on the Internet? Describe them briefly.
- 4. Answer any three questions:

3×5

- (a) Explain round robin scheduling.
- (b) Explain operating system as an resource manager.
- (c) Solve the producer-consumer problem using semaphores.

- (d) Explain the following terms in connection with files: open, close and rename.
- (e) What are the rules for naming a file? Which types of files are used in an operating system?

the Welle a note on nervour appolones.

- La Camiena romad robin scheduing